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Samenvatting  
De ontwikkeling in de eerste fase van het leven is van groot belang voor de gezondheid van 

kinderen en volwassenen. Ongunstige invloeden in specifieke kritieke perioden tijdens de 

vroege ontwikkeling hebben nadelige effecten op de gezondheid op latere leeftijd. Er zijn 

steeds meer aanwijzingen dat vroege en permanente epigenetische veranderingen een 

belangrijke rol spelen in de onderliggende mechanismen. In dit artikel bespreken wij de rol 

van DNA-methylatie, het bekendste epigenetische mechanisme, op gezondheid en ziekte 

van kinderen. Wij gaan in op de achtergrond van DNA-methylatie, op factoren die hierop van 

invloed zijn en op gevolgen van DNA-methylatie. Onderzoek gericht op het identificeren van 

factoren tijdens en kort na de zwangerschap die via epigenetische mechanismen bijdragen 

aan de kans op ziekten, moet uiteindelijk leiden tot  preventieprogramma’s gericht op de 

vroegste fase van het leven.  
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Inleiding  
De eerste fase van het leven is van groot belang voor de gezondheid van kinderen en 

volwassenen. Ongunstige invloeden in specifieke kritieke perioden tijdens de vroege 

ontwikkeling hebben nadelige effecten op de gezondheid op latere leeftijd. Het 

Developmental Origins of Health and Disease (DOHaD) concept postuleert dat blootstelling 

aan een ongunstige omgeving in kritische perioden tijdens de foetale periode of vroege 

kinderleeftijd leidt tot permanente veranderingen in de structuur en de functie van organen 

en nadelige effecten heeft op de gezondheid in het latere leven (1). Het is bijvoorbeeld 

bekend dat blootstelling aan een ongunstig dieet, roken of stress in het vroege leven 

geassocieerd is met een hoger risico op obesitas, cardiovasculaire en chronische 

obstructieve pulmonale ziekten in het latere leven (1). Deze bevindingen suggereren dat het 

ontstaan van deze veelal chronische ziekten mogelijk deels voorkomen kan worden door de 

vroegste fase van het leven te optimaliseren. Er zijn steeds meer aanwijzingen dat vroege en 

permanente epigenetische veranderingen een belangrijke rol spelen in de gevonden relaties 

tussen vroege blootstellingen en latere gezondheid en ziekte. In dit artikel bespreken wij de 

rol van DNA-methylatie, het bekendste epigenetische mechanisme. Wij gaan in op de  

factoren die hierop van invloed zijn, op gevolgen van DNA-methylatie veranderingen en op 

DNA-methylatie onderzoek in cohort studies (Fig. 1) (2). 

 

Wat is epigenetica?  
Epigenetische processen zijn veranderingen aan het DNA die geen invloed hebben op de 

basen-volgorde en die van invloed kunnen zijn op de expressie van genen (4). DNA-

methylatie is het meest bestudeerde epigenetische mechanisme. DNA-methylatie omvat het 

binden van een methylgroep aan een cytosine in het DNA op plaatsen waar een cytosine 

naast een guanine in het DNA zit, een zogenaamde CpG(cytosine-phosphate-guanine)-site. 

Methylatie van een CpG-site verandert de lokale structuur van het DNA en kan daarmee de 

genexpressie beïnvloeden (Fig. 2) (3). Het humane genoom bevat ongeveer 28 miljoen 

CpG-sites. Een deel hiervan is geclusterd in CpG-eilanden, gebieden met een grote CpG-

dichtheid, die zich vaak in promotor-regio’s van genen bevinden. DNA-methylatie is een 

dynamisch proces dat behouden blijft tijdens mitotische celdelingen. DNA-methylatie kan 

veranderen onder invloed van factoren als leeftijd, voeding en (maternaal) roken (3). De 

eerste fase van leven, de vroege foetale fase, wordt gekenmerkt door zeer hoge DNA-

methylatie veranderingen, die vele decennia kunnen persisteren. Recente technische 

ontwikkelingen hebben het mogelijk gemaakt om op genoom-breed niveau veranderingen in 

DNA-methylatie te bestuderen in grote populaties. Hiervoor wordt gebruik gemaakt van 

epigenoom-brede associatiestudies (epigenome-wide association studies, EWAs), waarbij 

een groot aantal CpG-sites verspreid over het hele genoom wordt gemeten. De nadruk ligt 
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hierbij op CpG-sites in en om genen (4). Voor kinderartsen is het Beckwith-Wiedemann 

syndroom een voorbeeld van een syndroom dat deels veroorzaakt wordt door DNA-

methylatie-veranderingen. Dit overgroei-syndroom wordt klinisch gekarakteriseerd door 

macrosomie, macroglossie, visceromegalie, buikwanddefecten en maligniteiten, en 

moleculair gekarakteriseerd door veranderde methylatie van het maternale chromosoom 

11p15. Recent onderzoek heeft aangetoond dat DNA-methylatie ook een rol speelt bij vaker 

voorkomende ziekten. 

 

Factoren van invloed op DNA-methylatie veranderingen  
Blootstelling aan ongunstige factoren in het foetale leven kan leiden tot veranderingen in 

DNA-methylatie. Een klassiek voorbeeld hiervan is het Agouti muismodel. Door het eten van 

een meer of minder methylrijk dieet tijdens de zwangerschap treden bij de nakomelingen 

DNA-methylatie-veranderingen op, die leiden tot verandering van expressie van het Agouti 

gen. Dat resulteert uiteindelijk bij de nakomelingen in een gele, in plaats van donkere, vacht 

en obesitas (2). In het Nederlandse Hongerwinter onderzoek is aangetoond dat foetale 

blootstelling aan hongersnood in het eerste trimester van de zwangerschap is geassocieerd 

met veranderingen in DNA-methylatie status van genen die geassocieerd zijn met 

geboortegewicht en LDL cholesterol vele decennia later (5). Dit suggereert dat het zeer 

vroege leven een kritieke periode is voor het vastleggen en behouden van DNA-methylatie 

kenmerken.  

Recent onderzoek heeft laten zien dat ook tegenwoordige veel voorkomende 

ongunstige blootstellingen bij gezonde populaties kunnen leiden tot blijvende veranderingen 

in de DNA-methylatie status van het kind (6-9). Onvoldoende folaat-inname of 

foliumzuurgebruik, belangrijke methyldonoren, tijdens de zwangerschap zijn geassocieerd 

met DNA-methylatie veranderingen bij het kind (6). Echter, dit betreft gen-specifieke 

bevindingen met vooralsnog onduidelijke gevolgen. Het effect van maternaal gebruik van 

andere supplementen of een specifieke dieet tijdens de zwangerschap op DNA-methylatie bij 

het kind, evenals de gevolgen van veranderingen in DNA-methylatie moeten nog worden 

onderzocht. Een prospectief Noors cohort van 1000 zwangere vrouwen en hun kinderen 

toonde als eerste aan dat bij kinderen de DNA-methylatie status van 10 genen, gemeten in 

navelstrengbloed, was veranderd door roken van moeder tijdens de zwangerschap (7). 

Aanvullend toonde een Engels populatie-gebaseerd cohort van 800 zwangere vrouwen en 

hun kinderen een dosis-respons-effect en een sterker effect op DNA-methylatie van 

maternaal dan paternaal roken aan, waarbij deze DNA-methylatie-veranderingen deels 

persisteerden tot op 17 jarige leeftijd (8). In een andere epigenoom-brede studie bleek dat 

maternaal ondergewicht en overgewicht geassocieerd waren met methylatieveranderingen 

bij het kind (9). Ook deze gevonden effecten waren sterker voor maternaal dan paternaal 
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gewicht wat een intra-uterien mechanisme suggereert. Gesuggeerd wordt dat ook maternale 

stress tijdens de zwangerschap geassocieerd is met DNA-methylatie bij het kind (3).  

Maternaal roken, overgewicht en stress zijn belangrijke factoren die de gezondheid 

van het kind op korte en lange termijn beïnvloeden. Bovenstaande studies suggereren dat 

het DNA-methylatie profiel door deze factoren wordt beïnvloed. 

 

Epigenetische veranderingen en ziekten  
Behalve dat blootstelling aan ongunstige factoren in het foetale leven kan leiden tot 

veranderingen in DNA-methylatie bij de geboorte, is DNA-methylatie bij de geboorte en 

daarna mogelijk ook geassocieerd met latere ziekten. Een recente studie toont aan dat gen-

specifieke of globale DNA-methylatie veranderingen in navelstrengbloed geassocieerd zijn 

met adipositas of lichaamssamenstelling op de kinderleeftijd (10). Studies die de rol van 

epigenetica op de ontwikkeling van respiratoire uitkomsten bestudeerden lieten zien dat 

DNA-methylatie status van specifieke genen geassocieerd is met longfunctie, astma en 

andere atopisch ziekten (1). Toekomstige studies zijn nodig om de relatie van niet alleen 

gen-specifieke maar ook epigenoom-brede DNA-methylatie gemeten op diverse leeftijden 

van het vroege leven tot aan de jong volwassenheid met ziekten op latere leeftijd te 

bestuderen.  

 

Epigenetica in populatie-gebaseerde studies  
Populatie-gebaseerde cohort studies vormen een ideaal platform voor het bestuderen van 

epigenetische veranderingen. Deze studies bestuderen een breed spectrum aan 

blootstellingen, gezondheidsuitkomsten en mogelijke confounders die herhaaldelijk op 

meerdere leeftijden tijdens de follow-up gemeten worden. Zwangerschaps- of 

geboortecohorten hebben het bijkomende voordeel dat ook de associaties van 

blootstellingen op verschillende momenten in de zwangerschap met DNA-methylatie van het 

kind bestudeerd kunnen worden.  

DNA-methylatie kan verschillen tussen individuen en tussen cellen en weefsels 

binnen hetzelfde individu (3). In populatie-gebaseerde studies hebben onderzoekers meestal 

alleen de beschikking over makkelijk toegankelijk en in afname weinig belastend 

lichaamsmateriaal, zoals bloed. Daarom worden de meeste EWAs in populatie-gebaseerde 

studies uitgevoerd met DNA uit leukocyten. Bij de interpretatie van studies naar verbanden 

tussen DNA-methylatie en blootstellingen of ziekten moet er rekening mee worden gehouden 

dat DNA-methylatie in leukocyten niet per definitie DNA-methylatie in het voor het fenotype 

relevante weefsel (bijvoorbeeld longweefsel bij het verband van DNA-methylatie met astma) 

vertegenwoordigt. Daarnaast is, anders dan bij genoom-brede associatie studies (GWAs), de 

causaliteit en de richting van het verband niet altijd eenduidig. Zo kan een verandering in 
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DNA-methylatie op een specifieke locatie in het genoom de body mass index (BMI) 

beïnvloeden, maar kan BMI ook effect hebben op de DNA-methylatie. Statistische 

technieken zoals Mendelian Randomization, waarbij genetische varianten gebruikt worden 

als proxy voor een specifieke blootstelling of voor DNA-methylatie, evenals longitudinale 

analyses met meerdere metingen van blootstellingen en DNA-methylatie over de tijd, kunnen 

een rol spelen bij het ophelderen van de causaliteit en de richting van het effect.  

 De wetenschappelijke waarde van EWAs wordt sterk verbeterd door het combineren 

van cohorten in consortia, in lijn met de strategie die voor GWAs inmiddels standaard is. 

Door meta-analyse van de resultaten van meerdere cohorten ontstaat meer power om de 

kans op toevalsbevindingen te verkleinen of eventuele kleinere effecten te kunnen aantonen. 

Daarnaast vergemakkelijken consortia de replicatie in andere cohorten, op andere leeftijden 

of in andere weefsels. Op dit moment hebben ongeveer 20 internationale zwangerschaps-, 

geboorte- en kindercohorten zich verenigd in het Pregnancy And Childhood Epigenetics 

(PACE) consortium, dat als doel heeft EWAs resultaten van individuele studies te 

combineren om zo sterkere conclusies te kunnen trekken.  

 
Conclusie  
Blootstelling aan ongunstige factoren vroeg in het leven is geassocieerd met ziekten op 

latere leeftijd. Epigenetische mechanismen zoals DNA-methylatie zouden hierin een 

belangrijke rol kunnen spelen. Tot dusver hebben studies voornamelijk gekeken naar gen-

specifieke epigenetische veranderingen, en zijn niet alle bevindingen in andere studies 

bevestigd. Daarnaast is nog niet bekend welke specifieke blootstellingen, in welke specifieke 

kritieke ontwikkelingsperioden van het foetale leven tot aan de jong volwassenheid leiden tot 

epigenetische veranderingen, gen-expressie veranderingen, veranderingen in orgaan 

structuur en functie, en uiteindelijke ziekte. Populatie-gebaseerde cohort studies vormen 

door hun longitudinale metingen van DNA-methylatie, gedetailleerde functie en ziekte 

uitkomsten en multipele confounders, een ideaal platform voor EWAs. Samenwerking in 

internationale consortia zal de wetenschappelijke waarde van dergelijke EWAs versterken. 

Uiteindelijk kunnen, door het identificeren van factoren tijdens en kort na de zwangerschap 

die via epigenetische mechanismen bijdragen aan de kans op ziekten, 

preventieprogramma’s ontwikkeld worden gericht op de vroegste fasen van het leven om de 

kans op latere ziekten te verkleinen. 
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Aparte tekstblokken: 
1. Analyse van EWAs: In EWAs wordt  de DNA-methylatie-status van een groot aantal 

CpG-sites gemeten. De meest gebruikte manier om dit te doen in populatie-gebaseerde 

cohort studies is op dit moment door middel van een “methylatie-array”, waarmee 

tegelijkertijd de DNA-methylatiestatus van ongeveer 485,000 CpG-sites in DNA uit 

leukocyten gemeten kan worden (voor meer informatie, zie de online referenties). De 

verwachting is dat dit aantal met het voortschrijden van de techniek op korte termijn 

omhoog zal gaan. Iedere CpG-site is óf wel, óf niet gemethyleerd. Voor iedere deelnemer 

wordt DNA uit een groot aantal cellen gebruikt. De DNA-methylatie voor iedere CpG-site 

wordt weergegeven als een zogenaamde “beta-waarde”, een waarde tussen de 0 en de 

1, of 0 en 100 procent, die aangeeft in welk percentage van de cellen die specifieke site 

gemethyleerd is. Deze beta-waardes kunnen dan gebruikt worden in regressie-analyses, 

waarin de methylering van 485,000 CpG-sites geassocieerd wordt met factoren van 

invloed of ziekten. Hierbij wordt een stringentere afkapwaarde voor significantie gebruikt 

(P-waarde < 1.0 x 10-7).  

 

2. Confounding in EWAs: In EWAs moet rekening gehouden worden met biologische en 

technische confounders. Voorbeelden van biologische confounders zijn sociaal-

economische status, leeftijd van moeder en kind, roken, en celtype. EWAs in 

cohortstudies gebruiken voornamelijk DNA uit leukocyten. Het totaal aantal leukocyten 

omvat verschillende subtypes, zoals granulocyten en B-cellen. Per subtype kan de DNA-

methylatie verschillen en hiermee moet in de statistische analyses rekening worden 

gehouden. Hiervoor kunnen gemeten waardes gebruikt worden, als deze zijn gemeten in 

bloed dat is afgenomen tegelijk met het bloed voor DNA-methylatie, of waardes die 

berekend zijn op basis van referentiepopulaties (voor meer informatie, zie de online 

referenties). Technische confounders komen voort uit de laboratorium-technische 

bepaling van DNA-methylatie, bijvoorbeeld doordat materiaal van deelnemers niet 

willekeurig over de arrays verdeeld is. Zo kunnen deelnemers op basis van leeftijd, 

geslacht of het hebben van een bepaalde ziekte geordend zijn. Als dit samengaat met de 

procedures in het laboratorium, kan dat effect hebben op de metingen. Deze “batch 

effecten” moeten zo veel mogelijk voorkomen worden bij het plannen van de studie, 

bijvoorbeeld door deelnemers over de arrays te randomiseren. Ook zal in de statistische 

analyses rekening gehouden moeten worden met batch effecten, net als met de 

biologische confounders. 
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Legenda Figuren 
 
Figuur 1 Paden leidend van blootstellingen aan ongunstige factoren in het vroege leven en 

epigenetica tot groei en orgaan adaptaties en ziekten in het latere leven. 

BPD: Bronchopulmonale dysplasie, DM2: diabetes mellitus type 2, CVZ: cardiovasculaire 

ziekten, COPD: chronisch obstructieve pulmonale ziekte. 

 

Figuur 2 Schematische weergave van methylatie van CpG-sites in het DNA.  

CpG: Cytosine-phosphate-Guanine; EWAs: Epigenome-wide association studies 

(epigenoom-brede associatiestudies). M: Methylgroep; mRNA: messenger RNA. 

 

 

 

 


