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Chapter 1

Introduction and outline

Variables are central in empirical data analysis. Analysts explore and try to explain relation-

ships between variables using various econometric models. One may now think that there is

no way to find relationships between variables without having these variables, but actually,

though, this is not true. In various situations there are techniques to estimate the values of

unobserved variables, also known as latent variables. After discovering these latent variables

(and sometimes during their discovery) they can be related to other, observed data. This

allows for new insights that otherwise would be unattainable. Unobserved variables are a

central theme among in this thesis, which consists of five distinct essays that are partially on

latent variables.

One line of research in this area focuses on variables that surely are real, but just unob-

served. An example of this is the research on evaluating forecasts created by professional

forecasters. These forecasts could be a combination of a model forecast and a judgmental

component, often called intuition (see Fildes et al., 2009 for an example and Lawrence et al.,

2006 for a review). In some cases only the final forecast is observed by the analyst. The

professional forecaster on the other hand knows whether the forecast was purely based on

a model or on intuition or a combination, and in the case of the latter, the forecaster also

knows what part is model and what part is not. In other words, in this case the unobserved

intuition does exist (even though it might be zero if the forecast is a purely model forecast).

The analyst might not have access to an explicit expression of the intuition, and thus the

analyst may be interested in reconstructing the intuition, in order to evaluate this intuition

on several criteria. Other examples of existing but unobserved variables are the set of prod-
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ucts a customer considers before buying one (Ben-Akiva and Boccara, 1995) and potential

workers’ reservation wage (such as in Maloney, 1991).

Sometimes, the unobserved variable does not really exist, but could have existed without

a stretch of the imagination. For example, consider a situation in which a researcher collects

data for several individuals on different days, but on some days some of the individuals do

not turn up. In this case, the researcher could leave out these individuals for the analysis, but

this could introduce sampling bias. Indeed, the drop-outs could have characteristics that are

related to the variables being researched. Instead, the researcher can also try to reconstruct

what the data would have been had the individuals turned up. Examples of this situation can

be found in research using questionnaires (Sijtsma and van der Ark, 2003) and experiments

(Little, 1995). This kind of what-if research can also be done using different setups, such as

in policy research (Cunha et al., 2006) or marketing (Liu, 2010).

Finally, there are also situations in which the unobserved variable most likely does not

exist, but is introduced by the analyst to find some kind of structure in an otherwise difficult to

analyze dataset. This is often the case when analyzing large datasets. For example, an analyst

may want to cluster observations or subjects into several groups to make general conclusions

for these clusters. Then, not only the clustering variable itself but also the number of clusters

is unobserved. If the true number of clusters is higher than the number chosen by the analyst,

then some of the clusters the analyst will find are not really there, but are instead some kind of

amalgamation of real clusters. This does not mean that the results are not useful, as it might

be the case that there are no large differences between the clusters as compared to the other

clusters. Examples of such unobserved clusters and several relevant estimation methods can

be found in Wedel and Kamakura (2000). An extreme case of clustering (and implicitly

applied very often) concerns the assumption that there is only one cluster, which implies the

assumption of homogeneity. This assumption might not always be realistic, but it can be

necessary to summarize results, such as when working with large datasets (Evans, 1987).

Another situation in which unobserved variables are introduced to provide the researcher

with structure in the data concerns the case of multi-level equation models (Fok and Franses,

2007; Fok et al., 2005).

In sum, there are arguments for the value of uncovering unobserved variables in empir-

ical data analysis. It should be noted however that uncovering unobserved variables in an

accurate and unbiased manner can be very difficult. For a start, the variables are unobserved,
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which means that techniques to uncover them cannot be formally tested in these situations.

Instead, artificial situations are then created in which researchers act as if they do not have

some particular data, which allows them to see how well they have performed in recreating

these variables. This provides some idea of how well the reconstruction of data performs

for that model, but it cannot control for unknown and unexpected characteristics that make

certain variables unobserved. Another difficult part of this type of research is that there is

often not much information that guides the reconstruction, and because of this there is of-

ten much uncertainty about the accuracy of the estimated values of the unobserved variable.

Many researchers rely on properties of large datasets to at least be correct on average, while

hoping that opposite deviations from this average mutually cancel out. This might not be

true if there are non-linear effects, in which case it might be better to also consider the full

distribution of the unknown variable instead of just its mean. But sometimes this is not fea-

sible for computational reasons. A final complicating element is that there are often other

confounding factors that blur the sparse information that is available. For example, in the

previously discussed situation of trying to split a particular forecast into a model-based part

and an intuition part, it might be the case that the model that the forecaster used has changed

throughout the sample period. The analyst would be unaware of this change and will prob-

ably assume a fixed model, and will thus attribute any change in properties to the intuition

component.

An important aspect to keep in mind when doing this type of research is that the estimated

values of the unobserved variable are not equal to the true value of the unobserved variable.

This may or may not have consequences for the final results. For example, the previously

mentioned individuals who do not turn up might have behaved very differently than if they

would have turned up. This might or might not be related to the reason for them not to show

up. Or in the case of trying to cluster individuals, it might be the case that some individuals

of cluster A happen to show properties in the sample that are more comparable to cluster

B, and thus they are incorrectly assigned to that other cluster. This shows that is not only

important to develop techniques to uncover unobserved variables, but also to find out what

are the drawbacks and limitations of those techniques.

As said before, unobserved variables are a common topic in all chapters in this thesis.

Another topic that appears in some form in all chapters concerns forecasting. Forecasting as

a research topic has many different components. One type of research is focused on produc-
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ing these forecasts using models, either as the main goal of the paper (such as Batchelor and

Dua, 1998; Clements et al., 2004) or as tool to illustrate the usefulness of a certain model

or technique (such as Engle and Watson, 1981). Forecasting research can also investigate

theoretical forecast properties (Yang, 2004) or actual properties of already existing forecasts

(such as Franses et al., 2011; Sheng, 2015, and many others) for various forecasting situ-

ations. All of the preceding components of forecasting are featured in at least one of the

upcoming chapters of this thesis.

Outline of this thesis

It is common practice to evaluate fixed-event forecast revisions in macroeconomics by re-

gressing current forecast revisions on one-period lagged forecast revisions. Under weak-

form (forecast) efficiency, the correlation between the current and one-period lagged revi-

sions should be zero. The empirical findings in the literature suggest that the null hypothesis

of zero correlation between the current and one-period lagged revisions is rejected very fre-

quently, where the correlation can be either positive (which is widely interpreted in the litera-

ture as “smoothing”) or negative (which is widely interpreted as “over-reacting”). Chapter 2

concerns a methodology to be able to interpret such non-zero correlations in a straightfor-

ward and clear manner. The approach is based on the assumption that numerical forecasts

can be decomposed into both a forecast from an econometric model and random expert intu-

ition. It is shown that the interpretation of the sign of the correlation between the current and

one-period lagged revisions depends on the process governing intuition, and the current and

lagged correlations between intuition and news (or shocks to the numerical forecasts). It fol-

lows that the estimated non-zero correlation cannot be given a direct interpretation in terms

of smoothing or over-reaction. It is also shown that smoothing and over-reaction, modelled

and interpreted correctly, can change over time. An empirical example is given to highlight

the usefulness of the proposed methodology.

Chapter 3 also focuses on expert forecasts. There is ample empirical evidence that expert-

adjusted model forecasts can be improved. One way to potential improvement concerns

providing various forms of feedback to the sales forecasters. It is also often recognized that

the experts (forecasters) might not constitute a homogeneous group. Chapter 3 provides a

data-based methodology to discern latent clusters of forecasters, and applies it to a fully new



5

large database with data on expert-adjusted forecasts, model forecasts and realizations. For

the data at hand, two clusters can clearly be identified. Next, the consequences for providing

subsequent feedback are discussed.

Chapter 4 puts forward a new data collection method to measure daily consumer confi-

dence at the individual level. The data thus obtained allow to statistically analyze the dy-

namic correlation of such a consumer confidence indicator and to draw inference on transi-

tion rates. The latter is not possible for currently available monthly data collected by statis-

tical agencies on the basis of repeated cross-sections. In an application to measuring Dutch

consumer confidence, it is shown that the incremental information content in the novel indi-

cator helps to better forecast consumption.

Chapter 5 concerns an analysis of about 300000 earnings forecasts, created by 18000

individual forecasters for earnings of over 300 S&P listed firms. The analysis shows that

these forecasts are predictable to a large extent using a statistical model that includes publicly

available information. When the focus is on the unpredictable components, which may be

viewed as the personal expertise of the earnings forecasters, it can be learned that small

adjustments to the model forecasts lead to more forecast accuracy. Based on past track

records, it is possible to predict the future track record of individual forecasters.

Finally, in Chapter 6 a new time series model is introduced that can capture the properties

of data as is typically exemplified by monthly US unemployment data. These data show

the familiar nonlinear features, with steeper increases in unemployment during economic

downturns than the decreases during economic prosperity. At the same time, the levels of

unemployment in each of the two states do not seem fixed, nor are the transition periods

abrupt. Finally, our model should generate out-of-sample forecasts that mimic the in-sample

properties. It is demonstrated that the new and flexible model covers all those features, and its

illustration to monthly US unemployment data shows its merits, both in and out of sample.





Chapter 2

Analyzing fixed-event forecast revisions

Based on Chang, de Bruijn, Franses, and McAleer (2013). All authors contributed equally.

Abstract

It is common practice to evaluate fixed-event forecast revisions in macroeconomics by re-

gressing current forecast revisions on one-period lagged forecast revisions. Under weak-

form (forecast) efficiency, the correlation between the current and one-period lagged revi-

sions should be zero. The empirical findings in the literature suggest that the null hypothesis

of zero correlation between the current and one-period lagged revisions is rejected frequently,

where the correlation can be either positive (which is widely interpreted in the literature as

“smoothing”) or negative (which is widely interpreted as “over-reacting”). In this chapter we

propose a methodology to be able to interpret such non-zero correlations in a straightforward

and clear manner. Our approach is based on the assumption that numerical forecasts can be

decomposed into both an econometric model and random expert intuition. We show that

the interpretation of the sign of the correlation between the current and one-period lagged

revisions depends on the process governing intuition, and the current and lagged correlations

between intuition and news (or shocks to the numerical forecasts). It follows that the esti-

mated non-zero correlation cannot be given a direct interpretation in terms of smoothing or

over-reaction. It is also shown that smoothing and over-reaction, modelled and interpreted

correctly, can change over time. An empirical example is given to highlight the usefulness

of the proposed methodology.
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2.1 Introduction

There is a substantial body of recent literature on the evaluation of macroeconomic forecasts

and, in particular, on forecast revisions. Such revisions involve potential changes in the

forecasts for the same fixed event. For example, Consensus Forecasters quote forecasts for

the value of an economic variable (such as the inflation rate, unemployment rate, real GDP

growth rate) in year T , where the forecast origin starts in January of year T − 1. When these

forecasts continue through to December in year T , there are 24 forecasts for the same fixed

event, and hence there are 23 forecast revisions (or updates).

The literature on forecast revisions deals with the empirical merits of these revisions (see,

for example, Lawrence and O’Connor, 2000; Cho, 2002) but, for a larger part, it seems to deal

with the properties of the updates themselves (see, for example, the recent study of Dovern

and Weisser, 2011). The latter seems to be inspired by the recent availability of databases

with detailed information of forecasts quoted by a range of professional forecasters.

In this chapter, we contribute to this second stream of literature, that is, an evaluation

of the properties of the forecast revisions themselves where, in particular, we show how to

interpret a key parameter in an auxiliary testing regression.

In the fixed-event forecast revision literature (see, for example, Chang et al., 2011) nu-

merical forecasts are taken as data. It is not necessarily known how the numerical forecasts

were obtained. We denote a forecast given at origin t− h, for fixed-event forecast horizon t,

as

Ft|t−h (2.1)

where h = 1, . . . , H . Therefore, for each event t, we have H forecasts, ranging from a one-

step-ahead forecast to an H-step-ahead forecast. A (first-order) forecast revision is defined

by

Ft|t−h − Ft|t−(h+1) (2.2)

and it is this type of forecast revision that is the focus of this chapter.

A commonly-used method to examine the potential properties of forecast revisions is to

use auxiliary testing regressions of the form:

Ft|t−h − Ft|t−(h+1) = α + β(Ft|t−(h+1) − Ft|t−(h+2)) + εt,h (2.3)
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where the value of β is of key interest.

Nordhaus (1987) introduced the concept of weak-form efficiency, which entails that,

under such efficiency the correlation between subsequent forecast revisions is zero. In other

words, under weak-form efficiency, it should be the case that β = 0 in equation (2.3). As

Nordhaus (1987) was concerned with forecasts from econometric models, it is appropriate to

refer to this concept as “weak-form model forecast efficiency”, whereby fixed-event forecasts

taken one period apart differ only randomly. Thus, there is no discernible improvement in

forecasts as the fixed event becomes less distant.

It should be emphasized that equation (2.3) is solely a testing equation, and is not a

model. The sole purpose of equation (2.3) is to test the null hypothesis of weak-form effi-

ciency, that is, β = 0. It must be emphasized that rejection of β = 0 is not synonymous with

interpreting equation (2.3) as an appropriate specification for modelling forecast revisions.

If this were the case, then equation (2.3) would be used to estimate forecast revisions rather

than for testing the weak-form efficiency of forecast revisions. Therefore, equation (2.3) can

be interpreted only in terms of testing the null hypothesis, β = 0, so that any other interpre-

tation of β, such as when β is not zero, is intrinsically meaningless. We will return to this

key issue below.

A further point to emphasize is that, as an AR(1) process for testing purposes, equation

(2.3) exhibits geometric decay, regardless of the sign or magnitude of β. Therefore, the

widely-used interpretations of smoothing and over-reaction based on whether β is estimated

to be positive or negative, respectively, in equation (2.3), must be taken as inherently flawed.

Interestingly, in various recent studies that have analyzed a range of forecast revisions, it

has frequently been found that the null hypothesis β = 0 is rejected (see Table 2.1). When

it is found that β > 0, the situation is sometimes interpreted as “forecast smoothing” (see,

for example, Isengildina et al., 2006). On the other hand, when it is found that β < 0, it is

believed to be a sign of efficient behavior in the event that there is no news in the forecast

data (see, for example, Clements, 1997). When there is news, a negative β is interpreted as

over-reaction (as will become clear below).

In this chapter, we propose a methodology to provide an interpretation of the alternative

sign outcomes of β arising from equation (2.3). The new approach is based on our conjecture

that available forecasts are typically the concerted outcome of an econometric model-based

forecast, Mt|t−h, and of the intuition of an expert (such as a professional forecaster), νt|t−h
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(see, for example, Franses et al., 2011 for substantial empirical evidence regarding this con-

jecture).

There are various reasons why forecasters may deviate from a pure econometric model-

based forecast. Examples are that forecasters aim to attract attention (see Laster et al., 1999),

or may have alternative loss functions (see, for example, Capistran and Timmermann, 2009).

In what follows, we use the decomposition of an available numerical forecast, which is

taken to be the underlying variable of interest, as

Ft|t−h = Mt|t−h + νt|t−h (2.4)

It will become apparent that changing Mt|t−h into πMt|t−h, with 0 < π < 1, whereby

the model forecast may be down-weighted by the expert, does not change the discussion

appreciably. Our next step is to propose a model for the intuition νt|t−h, and to allow for

correlation between intuition and the error term εt,h, in the model. Note that intuition does

not need to have mean zero. The interpretation of the sign of the correlation between the

current and one-period lagged revisions depends on the process governing intuition, and

the correlations between current and one-period lagged intuition and news to the numerical

forecast variable. We illustrate our methodology using empirical results that are available

in the literature, several of which are presented in Section 2.2, and for some new results

based on the well-known Consensus Forecasts. In Section 2.3 we discuss the methodological

approach, and in Section 2.4 we relate it to the empirical findings in the literature. Section 2.5

concludes with several further research issues.

2.2 Empirical Findings in the Literature

In this section we review a selection of the empirical results in the forecasting literature,

based on the auxiliary testing regression given in equation (2.3). The selection of these

papers is primarily intended to show that numerous estimates of β have been presented in

the literature. Further references to research on forecast revisions are given in these papers.

There are various studies that provide novel estimation tools for variants of (2.3) in the

event there are various forecasters who quote forecasts at the same time, or when there is

a correlation between the errors of (2.3) for forecast horizon t and the errors in the equation
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Table 2.1 Estimation Results for Variants of Equation (2.3)

Source Estimates of β, with averaging or pooling
Clements (1997) -0.414 (average across 5 cases, GDP)

Table 1, p. 233 -0.232 (average across 5 cases, inflation)
Isengildina et al. (2006) 0.396 (average across 5 cases, Corn)

Table 2, p. 1097 0.212 (average across 5 cases, Soybeans)
Dovern and Weisser (2011) 0.089 (average across G7, GDP)

Table 4, p. 463 -0.040 (average across G7, inflation)
0.001 (average across G7, industrial production)
-0.021 (average across G7, private consumption)

Ager et al. (2009) 0.309 (average across 12 countries, GDP)
Tables 5 and 6 0.163 (average across 12 countries, inflation)
pp. 178-179

Isiklar et al. (2006) 0.330 (pooled estimated across 18 countries, GDP)
Table II, p. 710

Ashiya (2006) often > 0 (IMF, OECD forecasts, GDP and inflation)
Loungani (2001) often > 0 (Consensus forecasts, 63 countries, GDP)
Berger and Krane (1985) often > 0 (DRI, Chase forecast, US, GNP)

for forecast horizon t+ j. For ease of discussion, these issues are ignored here, and we focus

only on the estimates of β in equation (2.3). A summary of the empirical findings is given in

Table 2.1.

Clements (1997) analyzes the forecasts for GDP and CPI made by the National Institute

of Economics and Social Research in the UK. Using 5 different versions of equation (2.3),

Clements (1997) documents an average value of β of -0.414 for GDP forecast revisions and

of -0.232 for inflation forecast revisions (see Clements, 1997, Table 1). In 5 of the 10 cases

considered, the negative parameter estimate is also significantly less than 0.

Isengildina et al. (2006) examine forecasts for crop production concerning corn and soy-

beans, where the forecasts are provided by the US Department of Agriculture. The authors

also use various versions of (2.3) and obtain an average estimate of 0.396 of β for corn and

0.212 for soybeans, and also show that 8 of the 10 estimates of β are significantly positive.

Dovern and Weisser (2011) analyze the forecasts obtained from the surveys conducted

by Consensus Economics. They focus on individual panelist’s forecasts for GDP, inflation,

industrial production and private consumption for the G7 countries. They conclude that in

only a few cases are the estimated values of β significantly different from 0 but, when they

are significant, they are predominantly negative. These authors interpret their finding as an

indication that forecasters overreact to incoming news.
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Ager et al. (2009) also analyze the Consensus Economics forecasts, but they consider

pooled forecasts rather than individual forecasts. They analyze the forecast revisions for

GDP and inflation for twelve industrial countries for the years 1996 through to 2006. For

GDP they report that in all cases the null hypothesis β = 0 is rejected, with a mean estimate

of 0.309 across 24 cases (namely, 12 countries and 2 methods - see their Table 5). In their

Table 6, they report a mean estimate of 0.163 across 24 cases for inflation.

Isiklar et al. (2006) adopt the view that a positive correlation between forecast revisions

can occur, and they seek to analyze how long it takes for those correlations to die out. The

authors propose using VAR models and impulse response functions, and also use the Consen-

sus Economics forecasts data set, for which they examine 18 industrialized countries and the

corresponding GDP growth forecasts. When the authors pool the estimates of β in equation

(2.3), they obtain an estimate of 0.330.

Finally, Ashiya (2006), Loungani (2001), and an early study in Berger and Krane (1985),

all find small but positive estimates of β in equation (2.3). These results are all interpreted as

indications of forecast smoothing, meaning that forecast revisions in one direction are most

likely followed by revisions in the same direction.

In summary, we observe from the literature that the estimates of β in equation (2.3) tend

to range from -0.5 to 0.5 and, in a significant number of cases the null hypothesis that β = 0

is rejected. Given the results in Franses et al. (2009) and Chang et al. (2011) regarding

the use of biased OLS standard errors in many empirical analyses of forecasts and forecast

updates, the frequency of rejecting the null hypothesis is likely to be biased upward.

In Figure 2.1 we report our own estimates of β for the pooled Consensus Forecasts for

US real GDP growth in the period 1990 to 2010. We also include the 95% confidence

bounds. We see from this graph that around 1995-1998 and 2005-2007, the estimate of β

is significantly negative, while in 2001-2002 and 2009 it was significantly positive. We will

return to these data below when we illustrate our proposed methodology.
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2.3 Interpreting the Empirical Findings

Despite the wealth of empirical evidence on patterns in forecast revisions, to date there would

seem to be no studies that have formally analyzed the meanings of positive and negative

estimates of β in equation (2.3). If β > 0, some kind of smoothing process may exist, but

what type of process might this be? Moreover, what does this smoothing process look like?

It is the purpose of this section to propose a formal methodology to derive how specific

estimates could arise, where we explicitly take into account that a numerical forecast is the

concerted effort of an econometric model and an expert individual’s intuition.

We begin by introducing some notation, and then derive the first-order autocorrelation of

Ft|t−h−Ft|t−(h+1), which is associated with β in equation (2.3). Finally, we consider several

special cases that can be used to explain the observed estimates given in Table 2.1.

Preliminaries

As stated above, the basic assumption for our methodology is that

Ft|t−h = Mt|t−h + νt|t−h (2.5)

which states that a given numerical forecast is the sum of a model forecast, Mt|t−h, and

of expert intuition, νt|t−h. For illustrative purposes, we focus on

Ft|t−1 = Mt|t−1 + νt|t−1

Ft|t−2 = Mt|t−2 + νt|t−2

Ft|t−3 = Mt|t−3 + νt|t−3

We use the familiar Wold decomposition of a stationary time series of interest (namely,

the numerical forecasts of key economic fundamentals such as real GDP growth, inflation

rate, and unemployment rate), yt, that is:

yt = εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + . . . (2.6)
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where εt ∼ (0, σ2) is an uncorrelated error process. This error process can be interpreted

as a news process (as will be seen below). The parameters, θk, k = 1, 2, 3, . . ., are such that

the time series is stationary and invertible.

Given (2.6), the econometric time series model forecasts can be written as

Mt|t−1 = θ1εt−1 + θ2εt−2 + θ3εt−3 + . . .

Mt|t−2 = θ2εt−2 + θ3εt−3 + θ4εt−4 + . . .

Mt|t−3 = θ3εt−3 + θ4εt−4 + θ5εt−5 + . . .

The two subsequent forecast updates are given as

Ft|t−1 − Ft|t−2 = Mt|t−1 −Mt|t−2 + νt|t−1 − νt|t−2

= θ1εt−1 + νt|t−1 − νt|t−2

(2.7)

and

Ft|t−2 − Ft|t−3 = Mt|t−2 −Mt|t−3 + νt|t−2 − νt|t−3

= θ2εt−2 + νt|t−2 − νt|t−3

(2.8)

Note that when

Ft|t−h = πMt|t−h + νt|t−h (2.9)

with 0 < π < 1, which is the case where the model outcome is only partially taken into

account, then similar results will appear as above, as the θ parameters will then be scaled by

π.

Correlations

In this subsection we assume that h = 1 (and we postpone analysis of other values of h to

future research), and that we have data for various numerical forecast events t. In order to

derive the correlation between the forecast revision in equation (2.7), that is, the left-hand

side variable in equation (2.3), and the variable on the right-hand side in (2.3), as given in

equation (2.8), we define the following variances and covariances:
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γ0 = Var(νt|t−i)

γ1 = Covar(νt|t−i, νt|t−(i+1))

γ2 = Covar(νt|t−i, νt|t−(i+2))

ω0 = Covar(εt−i, νt|t−i)

ω1 = Covar(εt−(i+1), νt|t−i)

(2.10)

The first three terms deal with the time series properties of random expert intuition. The

last two terms deal with the potential non-zero correlations between current news and current

intuition (namely, how intuition might react contemporaneously to news in the numerical

forecast), and between one-period lagged news and current intuition (namely, how intuition

might react with a one-period lag to news in the numerical forecast). Note that the premise

behind forecast smoothing, as it is presented in the literature, is that current news is discarded

to some extent, which means that ω0 < 0.

More precisely, the following definitions will be used to interpret smoothing and over-

reaction in a clear and meaningful manner:

• Definition 1a: Contemporaneous Smoothing of intuition to news occurs when ω0 < 0

• Definition 1b: Dynamic Smoothing of intuition to news occurs when ω1 < 0

• Definition 2a: Contemporaneous Over-reaction of intuition to news occurs when ω0 >

0

• Definition 2b: Dynamic Over-reaction of intuition to news occurs when ω1 > 0

In light of these definitions, it is possible that ω0 < 0 and ω1 > 0, or ω0 > 0 and ω1 < 0,

so that there can be a switch from smoothing to over-reaction, and vice-versa, over time.

This possibility does not seem to have been investigated in the literature.

Given the above terms and definitions, we can proceed to show that the variance of

Ft|t−2 − Ft|t−3 is equal to

E[(θ2εt−2 + νt|t−2 − νt|t−3)(θ2εt−2 + νt|t−2 − νt|t−3)] = θ2
2σ

2 + 2θ2ω0 + 2γ0 − 2γ1 (2.11)
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The covariance between Ft|t−1 − Ft|t−2 and Ft|t−2 − Ft|t−3 is equal to

E[(θ1εt−1 + νt|t−1− νt|t−2)(θ2εt−2 + νt|t−2− νt|t−3)] = θ2
2ω1− θ2ω0− γ0 + 2γ1− γ2 (2.12)

Hence, the parameter arising from equation (2.3) for h = 1 is given by

β =
θ2ω1 − θ2ω0 − γ0 + 2γ1 − γ2

θ2
2σ

2 + 2θ2ω0 + 2γ0 − 2γ1

(2.13)

This expression is the basis for an analysis of alternative special cases below, which serve

illustrative purposes.

Special cases

There are several special cases that are worth highlighting, as follows:

Econometric model only

Case (i): Ft|t−h = Mt|t−h

In this case, where the final forecast is just the model forecast with no intuition, such that

γ0, γ1, γ2, ω0 and ω1 are all equal to 0, it is clear that

E[(θ1εt−1)(θ2εt−2)] = 0 (2.14)

so that β = 0 in (2.3). This is the classic case of weak-form forecast rationality. We will

now show that only in this special case of the null hypothesis β = 0, does a value of β have

a straightforward and valid interpretation.

Intuition only

Case (ii): Ft|t−h = νt|t−h

In this case, the final forecast is based only on intuition and no model. Therefore, the

forecaster does not consider the use of an econometric model, and also does not have any

insights into the news process, εt, which means that ω0 and ω1 are equal to 0. In this case,

the parameter in (2.13) becomes
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β =
−γ0 + 2γ1 − γ2

2γ0 − 2γ1

(2.15)

which, in turn, after dividing the numerator and denominator by γ0, can be written as

β =
−1 + 2ρ1 − ρ2

2− 2ρ1

(2.16)

where the ρ parameters are the one-period and two-period lagged autocorrelations for

the intuition process. For illustrative purposes, we consider two alternative processes for

intuition, namely an autoregressive (AR) process and a moving average (MA) process:

Process (a): When intuition follows an AR(1) process, with parameter λ, then ρ1 = λ

and ρ2 = λ2. Note that intuition can have non-zero mean, which does not matter for these

derivations. Substituting these two terms into equation (2.16) gives

β =
λ− 1

2
(2.17)

Clearly, when intuition is a stationary AR(1) process, that is, when |λ| < 1, then −1 <

β < 0. If intuition is simply a white noise process, then the estimate of β equals -0.5. For an

AR(2) process for intuition similar results can be derived.

Process (b): When intuition follows an MA(1) process, with parameter θ, then ρ1 = θ
1+θ2

and ρ2 = 0. Substituting these terms into equation (2.16) gives

β =
−(θ − 1)2

2(θ2 − θ + 1)
(2.18)

In Figure 2.2, we present the parameter, β, as a function of θ. Again, it is clear that β is

negative unless θ = 1.

Forecasts based on model and intuition

Case (iii): Ft|t−h = Mt|t−h + νt|t−h with ω0 = 0 and ω1 = 0

In this case, where there is no correlation between current and past news and current

intuition, the expression for β is

β =
γ0 + 2γ1 − γ2

θ2
2σ

2 + 2γ0 − 2γ1

(2.19)
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Figure 2.2 Relationship between the parameters θ and β for an MA(1) process underlying intuition.

When a time series process is postulated for intuition, it is easy to see using (2.16) that

the value of β is also negative. This is an interesting result as it shows that NO smoothing

(Definitions 1a and 1b) and also NO over-reacting (Definitions 2a and 2b) can generate a

negative value of β. This would seem to cast serious doubt on the prevailing consensus in

the literature regarding the interpretation of β, except when β = 0.

In the following case where current intuition is correlated with current news, that is

Case (iv): Ft|t−h = Mt|t−h + νt|t−h with ω0 6= 0 and ω1 = 0,

the parameter in (2.13) becomes

β =
−θ2ω0 − γ0 + 2γ1 − γ2

θ2
2σ

2 + 2θ2ω0 + 2γ0 − 2γ1

(2.20)

A typical macroeconomic variable would show positive autocorrelation, certainly for

the first few of these so that, in practice, θ2 > 0 . In this case, for β to become positive,

ω0 should be large and negative. Thus, contemporaneous smoothing of intuition to news

(Definition 1a) can lead to a positive value of β, but this interpretation of smoothing is not

dependent on the sign of β.
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Figure 2.3 Values of β when γ0 = 1, γ1 = −0.8, γ2 = 0.6 (mimicking an AR(2)
process), σ2 = 1, ω0 = 0 (BETA 00), 0.5 (BETA 05) or 0.9 (BETA 09), and ω1 ranges from −1 to 1.

Case (v): Ft|t−h = Mt|t−h + νt|t−h with ω0 6= 0 and ω1 6= 0

In order to give an impression of which values of β can emerge in practically and relevant

cases, consider Figure 2.3. There we depict values of β for the case where γ0 = 1, γ1 =

−0.8, γ2 = 0.6 (mimicking an AR(2) process), σ2 = 1, ω0 = {0, 0.5, 0.9}, and where ω1

ranges from -1 to 1. Clearly, when ω0 and ω1 are both associated with “smoothing” (whereby

they are both negative), the value of β can still be negative. In short, this is a case where there

is both contemporaneous and dynamic smoothing, but the literature would typically interpret

a negative value of β as over-reaction. Figure 2.3 shows that any value of β is possible for

virtually any positive or negative values of ω0 and ω1.

In summary, when there is no correlation between current and lagged news and current

intuition (Case (iii) above), then β < 0. When there is a negative correlation between current

news and current intuition, and when there is a positive correlation between past news and

current intuition, then β > 0. In the event that β = 0 this can be associated with the

situation (a) where the forecaster relies fully on an econometric model and also (b) where

the forecaster relies fully on intuition, and where the time series properties of intuition are a
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random walk (that is, λ = 1 in equation (2.17)). In contrast, when only intuition is used and

intuition is a white noise process (that is, λ = 0 in equation (2.17)), then β = −0.5.

Interestingly, and most importantly, the above derivations and definitions show that the

estimated value of β is not directly associated with smoothing or over-reaction, but rather

depends heavily on the signs and values of both ω0 and ω1.

2.4 Interpreting Table 2.1

Using the results in the previous section, we can now evaluate the empirical results given in

Table 2.1. It seems that theoretically the values of β can range from around -1 to +∞, with

values in the range -0.5 to slightly greater than zero seem to be the most likely.

A value for β of -0.5 would mean that the forecaster may have discarded the outcome

of the model, and has used expert intuition, with the peculiar property that there is zero

correlation between νt|t−h and νt|t−(h+1). This absence of correlation seems quite unusual, as

the intuition-based forecasts are concerned with the same fixed event.

Dovern and Weisser (2011, p. 463) interpret a negative value of β as a sign of over-

reaction, “i.e., at first, they (forecasters) revise their forecasts too much, then they undo

part of this revision during the next forecasting round”. Hence, they assume that ω0 > 0

and ω1 < 0. The results in the previous section show that there can also be several other

situations that lead to negative values of β, specifically the covariance of current and lagged

news to the numerical forecasts with current intuition.

A large and positive value of β must mean that forecasters take current and one-period

lagged news into account when forming their intuition. A negative correlation between cur-

rent news and current intuition (ω0 < 0) means that a forecaster downplays the relevance

of current news, that is, there is under-reaction. This could be associated with a forecaster’s

uncertainty with the most recent releases of data. A positive correlation between one-period

lagged news and current intuition (ω1 > 0) suggests that the forecaster amplifies a recent

shock, which might not be there, and hence over-adjusts the model forecast. In the literature,

these situations are all presented under the label of “forecast smoothing”.

The results in the previous section suggest that, based only on estimates of β, these

separate cases cannot be disentangled, which leads to the key issue of identification. Various
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parameter configurations of γ0, γ1, γ2, ω0 and ω1, and especially of ω0 and ω1, can lead to

various values of positive and negative β.

By far, the optimal value of β is 0. This could mean either that the forecaster has relied

fully on an econometric model, or that the forecast is given as

Ft|t−h = νt|t−h (2.21)

with νt|t−h = νt|t−(h+1) + ζt,h where ζt,h ∼ (0, η2) is a white noise process.

What is certain, though, is that, when there is no correlation between news and intuition,

it follows that β is negative. For β to be positive a forecaster should under-react to current

news and over-react to past news. The latter case seems to occur most frequently in practice

(see Table 2.1).

In order to derive what forecasters actually do from the data on numerical values of

Ft|t−h, it is necessary to obtain estimates of the news process and of intuition. This requires

fitting an econometric time series model for yt, the numerical forecast of interest, to obtain

estimates of εt. Next, this model can be used to create estimates of the model-based forecasts,

Mt|t−h and, with these, one can estimate a time series model with observations on intuition,

νt|t−h. These two estimated series could then be used to compute the correlations between

current intuition and both current and past news. As such, one can obtain estimates of the key

parameters, γ0, γ1, γ2, ω0 and ω1, and then sensibly interpret the value of the estimated β. As

the variables are generated regressors, Franses et al. (2009) recommend using Newey-West

HAC standard errors to correct for the measurement errors in the estimated variables.

As an illustration, we return to our own example (Figure 2.1) on the Consensus Forecasts,

we do the following. We fit an AR(1) model to the yearly GDP growth figures for the US

in the period 1977-2011. With the estimates from this regression we construct one-year and

two-year-ahead model forecasts for GDP growth. Also, the residuals of this regression are

used as estimates for εt. Next to these model forecasts, we also have the Consensus Forecasts

for the period 1991-2012. Several forecasters have produced forecasts for current year and

next year’s GDP on a monthly basis, and we aggregate these into a single forecast. To

fairly compare these to the one-year and two-year-ahead forecasts, we only use the January

forecasts. Next, intuition is computed as the difference between the model and Consensus

forecasts. With these, we compute γ0 and γ1. As the forecasters only predict for next year, we
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do not have γ2, and hence in what follows next, we set this parameter equal to 0. Finally, we

compute ω0 and ω1 as the covariance between current and lagged news and intuition. Finally,

using the Wold composition we compute the value of θ2. The numerical results for this case

are that γ0 is 1.544 and γ1 is 0.312, that ω0 is 0.161 and ω1 -0.495 (which is associated with

current smoothing and dynamic over-reaction), With a σ2 estimated as 4.210 and an AR(1)

parameter in the model with 0.305, we obtain using (2.13) an estimate of β equal to -0.388,

which indeed is approximately the average value as displayed in Figure 2.1.

2.5 Conclusion

This chapter has shown that the interpretation of β in a regression of forecast revisions on

previous forecast revisions is not entirely straightforward. Currently, the literature unequiv-

ocally assigns meanings such as smoothing, and over-reaction or under-reaction, to positive

and negative values of β, but we have shown in this chapter that these are not one-to-one

relationships.

The approach developed in the chapter is based on the assumption that numerical fore-

casts could be decomposed into both an econometric model and random expert intuition. We

proposed a methodology to be able to interpret such non-zero correlations in a straightfor-

ward and clear manner. In particular, we showed that the interpretation of the sign of the

correlation between the current and one-period lagged forecast revisions depends on the pro-

cess governing intuition, and the current and lagged correlations between intuition and news

(or shocks to the numerical forecasts). It follows that the estimated non-zero correlation can-

not be given a direct interpretation in terms of smoothing or over-reaction. It was also shown

that smoothing and over-reaction, modelled and interpreted correctly, can change over time.

When estimates of γ0, γ1, γ2, ω0 and ω1 are available, it also seems possible to examine

the validity of other reasons for forecast updates not to be weak-form efficient, or rational.

Recent work in Ashiya (2003), Amir and Ganzach (1998), and DellaVigna (2009) sketch

various reasons for non-rationality. It would be interesting to examine whether professional

forecasters have certain forecasting styles. We postpone such an extensive analysis for future

research. Then it would be relevant to compare the behavior with the actual performance of

the forecasters. Indeed, as Franses and Legerstee (2010) have shown, in order to evaluate

forecast accuracy properly, one needs to know how the forecasts were actually created.





Chapter 3

Heterogeneous forecast adjustment and

the provision of feedback

Based on de Bruijn and Franses (2012). Authors contributed following a 75% / 25% split.

Abstract

There is ample empirical evidence that expert-adjusted model forecasts can be improved.

One way to potential improvement concerns providing various forms of feedback to the sales

forecasters. It is also often recognized that the experts (forecasters) might not constitute a

homogeneous group. This chapter provides a data-based methodology to discern latent clus-

ters of forecasters, and applies it to a fully new large database with data on expert-adjusted

forecasts, model forecasts and realizations. For the data at hand, two clusters can clearly be

identified. Next, the consequences for providing subsequent feedback are discussed.
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3.1 Introduction

Sales forecasters often rely on the output of a forecast support system (FSS) when they create

their own forecasts. A typical situation is that an FSS delivers forecasts and that an individual

forecaster modifies these as he or she sees fit. Oftentimes, an FSS includes forecast algo-

rithms which only include recent past sales data, while the forecaster with domain-specific

knowledge may believe that additional information can be useful and thus delivers an ad-

justed forecast, see Goodwin (2000, 2002). Due to the recent availability of novel databases

including FSS based forecasts, managers’ forecasts and actual realizations, more insights

are gained as to how these adjusted forecasts perform, how they are actually constructed and

how they can be improved. Fildes et al. (2009) marked the start of this large databases-based

research and Franses (2014) recently summarizes various findings across a range of studies.

The main stylized facts concerning manually adjusted FSS forecasts seem to be that

(1) FSS forecasts are almost invariably adjusted by individual forecasters, that (2) expert-

adjusted forecasts are often not as accurate as the FSS forecasts and that (3) there are various

ways to improve current approaches of adjusting FSS forecasts. One way to achieve im-

proved adjusted forecasts is to provide feedback to the forecasters on their actual behavior

and on their past track record. Legerstee and Franses (2014) analyze the behavior of fore-

casters who deliver forecasts for monthly sales data, where they compare data before and

after the moment that experts received different kinds of feedback on their behavior and their

task. They conclude that after feedback the adjusted forecasts deviated less from the FSS

forecasts and that their accuracy had improved substantially.

At the same time, various studies suggest that individuals who manually adjust model-

based forecasts do not constitute a homogeneous group. Boulaksil and Franses (2009) in-

terviewed various forecasters of whom some say that they never look at FSS forecasts when

creating their own, and others say that they deviate only a little from the FSS forecasts. In the

earnings forecasting literature, there also appear to be one or more different types of behavior

of forecasters, depending on whether they want to deliver accurate forecasts or want to stand

out with exceptional quotes, see Jegadeesh and Kim (2010) and Clement and Tse (2005).

Similarly, in the macroeconomics literature there are also examples of differing behavior

across forecasters, see for example Lamont (2002).
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When there are different types of forecasters who behave differently when adjusting FSS

forecasts, then feedback to these different types of forecasters most likely should also be

different, and this is the key premise in this chapter. Hence, to improve the overall quality of

adjusted forecasts, one may wish to discern groups of individual forecasters with common

behavior within the group and differing behavior across the groups. As records of the adjust-

ment process typically do not exist (Franses, 2014), the division of forecasters into various

groups must be done using the available data. In this chapter we therefore propose a method

to disentangle groups of forecasters based on their actual behavior. Knowing the clusters can

lead to more tailor-made feedback, and we recommend such variants of feedback in our case

study. The database in our case study has never been analyzed before and concerns the FSS

forecasts, adjusted forecasts and realizations of sales of SKUs (stock keeping units) of a very

large Germany-based pharmaceutical company.

The outline of this chapter is as follows. In Section 3.2 we discuss the database. In Sec-

tion 3.3, we provide our methodology to link the behavior of sales forecasters with their fore-

cast performance, while allowing for latent classes of individual forecasters with common

behavior. In Section 3.4 we discuss the main results for our new database. In Section 3.5, we

provide some insights on how our results can be used to provide feedback to the forecasters

so that they can improve their performance. Finally, Section 3.6 concludes.

3.2 Data

The data set that we use is provided by a globally operating Germany-based pharmaceutical

company. Country-specific managers produce sales forecasts for a set of products, and this

set is different per country. This means that there is only a single forecaster for each product

in a certain country. The dataset also contains the FSS forecasts, the manual adjustments

(which are the differences between the managers’ and the FSS forecasts) and the actuals.

Each pharmaceutical product can be assigned to a specific product category. The FSS fore-

casts are based on lagged sales data and thus do not account for exceptional events or any

other explanatory variables.

The full dataset concerns 11432 products with 29 monthly 3-months ahead forecasts

for the period 2009-2012 (May). For many products there are only forecasts for a few of

the months in the sample. Next to this, the managers are not always very precise in their
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reporting behavior. For example, sometimes the actuals and the forecasts are not of the same

magnitude, meaning that for example an FSS forecast is reported in thousands of units, while

the actual is reported in millions of units. For some cases it is clear how to bring them to

the same order of magnitude, for others it is not, and these latter cases are dismissed. We

have filtered the products such that only those products for which data in more than half

of the sample period is in good condition are selected. All three relevant series (managers’

forecasts, FSS forecasts and actuals) were required each to meet this criterion.

Next, we calculate for each product/country combination the median percentage error

(MPE) as compared to the median realization of sales of the corresponding product in the cor-

responding country. We use the median in order to robustify the accuracy measures against

unnoticed badly-reported forecasts. We use the percentage error (instead of the error) to

make products and countries of different sizes comparable. This is important for our la-

tent class model below. We also calculate the median absolute percentage error, the median

percentage adjustment and the median absolute percentage adjustment.

After data cleaning, we have data for 2472 products across 67 forecasters. The aver-

age number of products per forecaster is 36.90. The distribution is depicted in Figure 3.1.

Clearly, many forecasters deal with less than 40 products, although some are responsible for

more than 150 products1. The empirical distribution of the median absolute percentage error

is heavily skewed to the right. To ensure that a few large observations do not dominate the

final results, we will analyze the natural logarithm of the median absolute percentage error,

of which the distribution is shown in Figure 3.2. More details on this database are discussed

below where we deal with aspects of our methodology.

1As a referee rightfully pointed out, it could be that the number of products assigned to a forecaster is not
random and related to a forecaster’s past performance. Unfortunately, we have no information as to whether
such correlation exists. The differences are mainly caused by the size of the country and the related portfolio.



Figure 3.1 The distribution of the
number of products per forecaster. The y-axis gives the frequency and the x-axis gives the number of products.
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Figure 3.2 The distribution of the logarithm of the median absolute percentage error.

3.3 Methodology

We use a three-level econometric model to discern potential clusters of forecasters with simi-

lar behavior. Our model follows the tradition in latent class modeling as outlined in McLach-

lan and Peel (2000) and Wedel and Kamakura (2000). The variable to be explained (y) is

forecast performance. The independent variables for this performance are those that concern

the adjustment behavior of the forecasters (collected in X). In a separate level of the model,

the parameters that link the performance withX are made a function of moderating variables

(Z), like the number of products. Next, we allow that the parameters of the moderating vari-

ables associate with S latent classes. For each forecaster we thus estimate a probability of

membership of one of the classes.
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The model

The equations of our model are

yp,i = βp,iXp,i + εp,i (3.1)

βp,i = γiZp,i (3.2)

γi =
S∑
s=1

ψsP[Typei = s] (3.3)

with p ∈ [1, ..., P ] indicating a product, i ∈ [1, ..., N ] indicating a forecaster responsible

for in total Pi products and s ∈ [1, ..., S] indicating potential clusters of forecasters with

similar behavior. For our data, the dependent variable in (3.1) is the natural logarithm of

the median of the absolute percentage error per product (logMedAbsPercErr). Apart from

the intercept, the two variables in X are the natural logarithm of the median of the abso-

lute percentage adjustment + 0.01 (logMedAbsPercAdj) and the median of the percentage

adjustment (medPercAdj). Apart from the intercept, the three variables in Z are the natural

logarithm of the amount of products the forecaster has been assigned to (logNrProd), the nat-

ural logarithm of the number of products in the same category as the respective product and

also assigned to the same forecaster (logNrProdCat), and the autocorrelation in the errors of

the FSS forecasts (corrErrModel). The latter variable appears prominent in recent studies,

see for example Franses and Legerstee (2009). When the parameters in (3.1) are positive,

then a larger-sized adjustment occurs simultaneously with larger forecast errors, and even

more so for larger upward adjustments. The parameters in (3.2) can amplify or dampen the

effects of the variables in X . The third level of the model (3.3) allows for S latent classes

for the parameters in (3.2).

Estimation and inference

For the parameter estimation of (3.1)-(3.3), we use an Expectation-Maximization algorithm

(EM-algorithm) (Dempster et al., 1977). In such an algorithm there is an Expectation step

(E) which concerns the expectation of a set of unobserved variables, given current estimates

of the parameters, and a Maximization step (M) in which the likelihood function of the

parameters is maximized, given current estimates of the unobserved variables. These steps
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are repeated until convergence. In our case, the cluster probabilities are the unobserved

variables, while the parameters consist of ψs together with the unconditional probabilities

of belonging to one cluster, for which we use the notation Ps. Using these, estimates for γi

and βp,i can directly be calculated. In the discussion below, yi is a vector consisting of the

various values of yp,i for all p, and similar notation is used for Xi and Zi.

In the E step the expectation of the individual-group probabilities P(Clusteri = s) is

taken, given estimates of ψs and the unconditional probability Ps for s = 1, . . . , S. This

expectation is calculated by comparing for all s the individual densities fi,s(yi;Xi, Zi, ψs) in

case forecaster i would be fully assigned to cluster s, while also incorporating the uncondi-

tional probability Ps. Then, the new estimate of P(Clusteri = s) is the fraction

Psfi,s(yi;Xi, Zi, ψs)∑S
r=1 Prfi,r(yi;Xi, Zi, ψr)

. (3.4)

In the M step the likelihood function of the parameters ψs and Ps is maximized, given

estimates of the individual-group probabilities P(Clusteri = s). It can be shown that these

two variables can be estimated separately. To estimate Ps one can simply take the average of

P(Clusteri = s) across all i.

For estimation of the ψs we can show that the model reduces to a standard regression.

This can be seen by using the multilevel property of the model, that is

yp,i = βp,iXp,i = γiZp,iXp,i =
S∑
r=1

ψrP(Clusteri = r)Zp,iXp,i. (3.5)

Define X∗p,i,s = P(Clusteri = s)Zp,iXp,i. Then, the model reduces to the regression of

yp,i on all S matrices X∗p,i,s. This results in estimates of ψs, which can be used to construct

estimates of γi and βp,i.

As the EM-algorithm might converge to a local optimum, we use several starting points

for each S that we consider. The first starting points are derived from the best likelihood for

the case S − 1 as follows:

1. Select a cluster s from the previous S − 1 clusters.



3.4 Results 33

2. Split this cluster into two clusters by randomly assigning different proportions of

P(Clusteri = s) to clusters s and S, which is the new cluster. In this step, we use

different proportions of the original P(Clusteri = s) for each forecaster i.

3. Start the EM-algorithm and run it until convergence.

As there are S − 1 clusters to split up in the first step, this results in S − 1 outcomes. We

also useR other starting points, which are constructed by randomly drawing from a Dirichlet

distribution with all S parameters equal to 1
S

for each forecaster i. We have set R at 2500.

Of these total R + S − 1 converged estimates, the best one is chosen using the likelihood.

Following the above discussion, we end up with estimates for each S that we consider.

Of course, increasing S will increase the likelihood, as in the worst case a cluster can always

be cut into two to reduce the ideosyncratic error a bit, even though the forecasters within

the clusters actually belong to the same cluster. To choose the final S, one can use the AIC-

3 criterion, which has been shown to perform well in a multilayered model (Andrews and

Currim, 2003). If a smaller number of types is desired, one can use the BIC criterion. There

can also be ad-hoc reasons for the number of clusters.

In the EM-algorithm, one can quickly run into numerical problems. For example, the

density when a certain individual is categorized into a certain cluster might be so low that

it is almost zero. To avoid numerical problems, natural logarithm formulations of the above

are used. If for a forecaster during the process at a certain point all densities are equivalent to

0 (or the log-densities equal to −∞), this forecaster is assigned to the different types using

just the unconditional probabilities and then the estimation process is continued.

3.4 Results

We have estimated the model parameters in (3.1)-(3.3) for different values of S. The AIC-3

criterion suggests using 6 clusters, while the BIC recommends 3 clusters. A closer look at

the case with 3 clusters indicates that there is one cluster with only a few forecasters (of the

67), and this also holds in the first case where 4 clusters are exceptionally small. Because of

this, for this database we therefore decide to limit the number of cluster to S = 2.

As the estimated values of βp,i and γp,i are directly dependent on the estimated values of

ψs, we report the estimation results for ψs for each of the clusters in Table 3.1. We see that in
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Table 3.1 The estimates of
ψs with standard errors in parentheses. Boldface printed estimates are significant at the 5% significance level.

Intercept logMedAbsPercAdj medPercAdj
Type 1 Intercept 1.881 (0.165) 1.108 (0.070) -0.145 (0.050)

logNrProd -0.083 (0.054) -0.179 (0.024) 0.054 (0.016)
logNrProdCat -0.001 (0.054) 0.087 (0.025) -0.015 (0.009)
corrErrModel -0.178 (0.110) 0.173 (0.050) -0.048 (0.026)

Type 2 Intercept 0.877 (0.133) 0.504 (0.059) 0.049 (0.024)
logNrProd -0.097 (0.046) -0.022 (0.021) 0.003 (0.009)

logNrProdCat 0.172 (0.049) 0.004 (0.022) -0.003 (0.010)
corrErrModel 0.178 (0.102) 0.082 (0.045) 0.034 (0.026)

Table 3.2 The estimates of ψs while assuming that there is only one cluster (homo-
geneity). Standard errors in parentheses. Boldface printed estimates are significant at the 5% significance level

Intercept logMedAbsPercAdj medPercAdj
Intercept 1.218 (0.104) 0.727 (0.045) 0.007 (0.021)

logNrProd -0.051 (0.036) -0.043 (0.016) -0.001 (0.007)
logNrProdCat 0.091 (0.037) -0.005 (0.016) 0.012 (0.006)
corrErrModel 0.108 (0.077) 0.139 (0.034) -0.066 (0.017)

both clusters the size of the forecast error increases if the size of the adjustment increases. For

forecasters in cluster 1 this increase is much larger (1.11 versus 0.50). Additionally, the effect

of this variable for cluster 1 forecasters increases when the product is part of a larger category

of products (0.09) and when the autocorrelation in the FSS forecasts increases (0.17), but it

decreases if there is an increase in the total number of products assigned to the forecaster

(-0.18). For the forecasters in cluster 2 these effects are not significant.

The forecast error increases for negative adjustments (compared to positive adjustments

of the same size) for forecasters in cluster 1 (-0.15), while cluster 2 forecasters have a larger

error in the case of positive adjustments (0.05). Also, the forecast error decreases for cluster

2 forecasters in the countries with more products (-0.10), but it increases if the product is part

of a larger product category (0.17). In the next section, we will discuss in more detail what

the managerial implications are of these estimates, but for now we can conclude that for our

data there are two types of forecasters with clearly distinct behavioral characteristics. This

can also be learned from the estimation results in Table 3.2, where we present the parameter
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Figure 3.3 The distribution of the estimated probabilities of being a member of type 1 forecasters.

estimates in case we assume that all forecasters are homogenous. Due to averaging various

significant effects seem to disappear.

Figure 3.3 shows the distribution of the estimated probabilities of a forecaster being a

member of cluster 1. As can be seen, our model allows us to clearly categorize most of

the forecasters into separate clusters. Note that such a distinction would be impossible by

just looking at the graphs in Figure 3.1 and 3.2. There are only a few forecasters who have

properties of both clusters. Figure 3.3 clearly shows that there is a distinction between the

two types of forecasters, and also that these classes are substantially large. We have tried to

explain the categorization of our multi-level approach using available explanatory variables

(for example, using a binomial probit), and we have found no significant parameters. This

again indicates that one needs a multi-level or mixture model such as ours to disentangle

different classes of forecast behavior.

To examine if the forecasters get assigned different time series with different properties,

we compute the first order autocorrelation and the standard deviation of all the time series.

The average autocorrelations are 0.64 and 0.64 for the series that are dealt with by the fore-
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Table 3.3 Several characteristics of both forecasters clusters. Standard deviations in parentheses.

Cluster 1 Cluster 2
Ps, unconditional probability 0.312 0.688
Average number of products 52.23 (14.27) 29.95 (5.44)

Average of logMedAbsPercErr 1.162 (0.054) 0.736 (0.040)
Average of logMedAbsPercErr for FSS 0.969 (0.049) 0.630 (0.037)

Average absolute adjustment 22.50 (1.088) 31.74 (4.462)
Percentage upward adjustments 63.3 (0.003) 61.4 (0.002)

casters in clusters 1 and 2, respectively. The respective standard deviations are 36978 and

39166, and these numbers also do not differ much.

Table 3.3 shows several characteristics of the forecasters per cluster, which are weighted

averages with as weights the cluster probabilities. Notice that both types of forecasters per-

form worse than the FSS forecasts, on average (which is consistent with earlier findings in

the literature). There are twice as many forecasters in cluster 2, but those in cluster 1 are

concerned with about twice as many products. Cluster 1 forecasters are more active fore-

casters, and may have more experience. Cluster 1 forecasters adjust more upwards (63.3

versus 61.4), which at first glance seems beneficial for them due to their negative sign of

β2 in Table 3.1 (-0.18). This effect may be countered by their number of products. Indeed,

29.95 × 0.054 = 1.62 > 0.15, their average parameter of X2 is positive and higher than

that of cluster 2. For X1 the reverse holds true as the larger number of products makes the

coefficient to decrease. Taking all factors into account simultaneously, the percentage error

for cluster 1 forecasters is larger than the percentage error of cluster 2, and this may be due

to their actions or due to a more difficult forecasting task.

3.5 Implication of the estimation results for feedback

The three types of feedback that are commonly provided to forecasters who can rely on

FSS forecasts and may quote modified forecasts are outcome feedback, performance feed-

back and cognitive process feedback. Outcome feedback provides the forecaster with the

realizations of the relevant variables, and it seems that this type of feedback is the least ef-

fective, see Goodwin and Fildes (1999) and Lawrence et al. (2006). Performance feedback

provides the forecaster with information on past forecast accuracy. Remus et al. (1996) did
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Table 3.4 The effect of one standard deviation (calculated
per cluster) change in some characteristics on logMedAbsPercErr for the average forecaster of both types.

Cluster 1 Cluster 2
Variable Change Outcome % Effect Change Outcome % Effect

logMedAbsPercAdj 0.067 1.113 4.4 % 0.058 0.748 2.7 %
medPercAdj 0.731 1.092 2.3 % 0.129 0.730 0.9 %
logNrProd 0.029 1.071 0.2 % 0.025 0.719 -0.2 %

logNrProdCat 0.027 1.067 -0.2 % 0.025 0.725 0.4 %
corrErrModel 0.009 1.066 -0.3 % 0.008 0.722 0.1 %

Benchmark forecaster 1.069 0.721

not find evidence of successful performance feedback, but Bolger and Önkal Atay (2004),

Stone and Opel (2000) and Athanasopoulos and Hyndman (2011) did. Note that all these

studies assumed homogeneous behavior of the forecasters, and this may perhaps explain the

mixed results. Third, cognitive process feedback gives the forecaster information on what

the forecaster does and how he or she reacts to changes in the context of in the informa-

tion. At present the successfulness of this type of feedback is doubtful, see Remus et al.

(1996), Balzer et al. (1992) and Lim et al. (2005). Finally, task properties feedback provides

the forecaster with statistical information on the variable of interest, and it seems the most

successful type of feedback, see Remus et al. (1996), Sanders (1992), Welch et al. (1998),

Goodwin and Fildes (1999) and Lawrence et al. (2006).

In order to assign appropriate feedback to the forecasters in each of the clusters, the

parameter estimates in Table 3.1 are not directly helpful. Therefore, we now address the

issue of which changes in behavior and context of the forecasters could potentially improve

their forecast track record. Table 3.4 contains some highlights of potential results.

For an average forecaster in cluster 1, the value for logMedAbsPercErr is 1.07, while for

cluster 2 it is 0.72, see the bottom line of Table 3.4. This table also shows how much this

criterion would change if certain characteristics would be adjusted by one standard devia-

tion while the values of other characteristics are kept constant. As this effect is the effect

on a log-measure, this can be interpreted as a percentage change. For example, a change of

one standard deviation in the median absolute percentage adjustment (first line of Table 3.4),

which means more deviation from the FSS forecast, increases the median absolute percent-

age error of the average cluster 1 forecaster 4.12% and for cluster 2 it is 3.74%. The first
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two lines of Table 3.4 show that the effects of the two Xp,i variables have positive effects,

although the effects can differ in size. Increasing the size of the adjustment increases the size

of the error, and making more positive adjustments also increases the size of the error

In terms of feedback, both sets of forecasters should receive performance feedback that

they adjust too much, and should do less. Also, task properties feedback indicating that

there is no need to most often adjust upwards as the FSS generally would provide unbiased

forecasts, can also help. Given that the clusters look similar in this dimension here there

seems no need to diversify the types of feedback.

When we consider the first two lines of the second panel in Table 3.4, we see that the

amount of products and categories do deliver opposite effects across clusters. For example,

increasing the number of products for a forecaster with one standard deviation (while keep-

ing the number of products per category equal, which effectively means introducing new

categories to this forecaster and increasing the task) increases the absolute percentage error

with 0.19% for cluster 1 forecasters, while cluster 2 forecasters will see a decrease of -0.28

As a fictitious case, if we were to assign (on average) 3.78 products less to the cluster

1 (more experienced) forecasts and 1.21 more product categories, then their performance

improves with 0.3%. In contrast, if we assign 1.94 products more to cluster 2 forecasters,

and 0.73 categories less, then performance for this group increases with 0.8%.

Most evidence of the relevance of diversifying feedback (here: task properties) is given

in the last line of the second panel of Table 3.4. When the persistence in forecast errors of the

FSS increases with one standard deviation, the forecasters in cluster 1 better do not change

their behavior (as the forecast error decreases with 0.28%), while forecasters in cluster 2

should be recommended to act.

3.6 Conclusion

In this chapter we have proposed a methodology to discern clusters of forecasters who behave

differently with varying performance success, which in turn can be used to appropriately pro-

vide feedback to the forecasters. Upon applying our new methodology to a new and large

database with expert-adjusted forecasts, FSS forecasts and realizations for a pharmaceuti-

cal company, we could discern two clear disjoint clusters of forecasters, and we could also

suggest more precise types of feedback for these clusters.
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The downside of our study is that unfortunately we cannot test our recommended feed-

back on real people. We have no access to the individual forecasters of the company, and we

also will not gain access in the future due to many job moves since we collected the data.

Hence, in a sense our results could be interpreted as merely speculative. In our future work,

we plan to run behavioral experiments in a laboratory.

Even though our study analyzed only a single large database, we believe that the main

take away is that the assumption of a single homogeneous set of forecasters may be too

strong and that this assumption also can obstruct the proper implementation of feedback. As

the heterogeneity can only be estimated using the available data, our methodology seems to

be practically relevant. It may also be that various findings in the literature of ineffective

feedback may perhaps be due to the homogeneity assumption. Further empirical evidence is

however needed.





Chapter 4

A novel approach to measuring consumer

confidence

Based on de Bruijn, Segers, and Franses (2014). All authors contributed equally.

Abstract

This chapter puts forward a new data collection method to measure daily consumer confi-

dence at the individual level. The data thus obtained allow to statistically analyze the dy-

namic correlation of such a consumer confidence indicator and to draw inference on transi-

tion rates. The latter is not possible for currently available monthly data collected by statis-

tical agencies on the basis of repeated cross-sections. In an application to measuring Dutch

consumer confidence, we show that the incremental information content in the novel indica-

tor helps to better forecast consumption.
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4.1 Introduction

Consumer Confidence Indicators (CCIs) are often regarded as useful variables to measure

the current state of the economy as well as to forecast its future states at reasonably short

horizons, see Ludvigson (2004) for an assessment. Most industrialized countries report such

indicators at a monthly level. Typically consumer confidence is measured by surveying one

thousand or more individuals each month. The individuals are asked whether they believe

that their situation has improved in the previous period or will improve in the next period,

while focusing on their financial situation, employment, and, for example, their purchases of

durable and more expensive products in particular. The answer categories are (very) positive,

neutral, and (very) negative, and their origin goes back to Katona (1951). The total indicator

is constructed by subtracting the percentage of negative answers from the percentage of

positive answers. Many countries also report more specific indicators, which are confined to

the financial position or employment only. Publicly available data are published in original

format as well as after seasonal adjustment.

Despite their widespread use and interpretation, it can be of interest to investigate if the

way consumer confidence is measured can be improved. One research angle can concern the

questions asked and the way indicators are constructed from these questions. One may for

example consider replacing the traditional qualitative questions by probabilistic questions in-

quiring about more well-defined events, as suggested in Dominitz and Manski (2004). Also

the fact that consumer confidence data show signs of seasonality can be viewed as inconve-

nient, and perhaps a rephrasing of the questions can overcome this potential drawback.

A second angle for potential improvement of consumer confidence indicators would be

to better understand how consumer confidence varies across individuals with different socio-

economic and demographic characteristics. These insights could be exploited to reduce sam-

pling error due to the use of small and possibly unrepresentative samples in the data collec-

tion stage, which improves the reliability of the indicators. We believe that improvement in

these two directions can be relevant, but the third research angle to be discussed next seems

more promising.

A third angle is that consumer confidence data are usually so-called repeated cross-

sectional data. That is, each month approximately one thousand individuals are interviewed,

but each month this concerns one thousand different individuals. A major consequence of
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this way of collecting data is that developments over time are difficult to interpret. Basically,

when an indicator is, say, -18 in December, while it was -21 in November, we must con-

clude that the average fraction of more negative answers in December was smaller than in

November. We could even say that in December consumer confidence has increased with

3 points, but we must be aware that this does not concern the same individuals. Hence, an

interpretation of a sequence of monthly consumer confidence levels is prone to the so-called

ecological fallacy. This fallacy concerns the situation where we seek to derive micro behav-

ior from aggregated data, and here it would mean that we think that the same individuals

have changed their confidence. In the literature there are various suggestions to circumvent

or solve this problem, see King (1997), Moffitt (1993), Sigelman (1991), and the collection

of papers in King et al. (2004), among many others. In this chapter we seek to do that, but

now by applying an alternative method of data collection.

In this chapter we put forward a method to collect high-frequency consumer confidence

data at the individual level. We keep the Katona-type questions intact, but we merely focus on

the collection and analysis of the data, trying to prevent ecological fallacy1. To that end, we

collect data such that we have the same (though not all) individuals being interviewed from

one week to another, to alleviate the problem that respondents from becoming annoyed or

uninterested. In order to statistically analyze the dynamic correlation of our CCI and to draw

inference on transition rates, we develop a Markov transition model. The model describes the

persistence in an individual’s confidence level. We exploit the Markov transition properties

of the model to estimate an expected response for each individual on the days on which the

individual did not complete the questionnaire. This enables us to compute a daily consumer

confidence indicator as if the entire panel was surveyed every day. To illustrate the usefulness

of our approach, we employ the indicator to forecast Dutch consumption. We show that the

incremental information content in the novel indicator helps to improve forecasting accuracy.

The outline of the chapter is as follows. In Section 4.2 we present our method of data

collection, and we argue that it has various convenient properties for the purpose of measur-

ing consumer confidence. Next, in Section 4.3 we introduce the Markov transition model

that will be used to describe longitudinal developments in consumer confidence at the indi-

vidual level. In Section 4.4 we illustrate the usefulness of our method by forecasting Dutch

1The University of Michigan also uses a rotating design, and we will explain its differences from our method
below.
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household consumption using the novel consumer confidence indicator. In Section 4.5 we

conclude with an outline of various areas for further research.

4.2 Methodology

To measure developments in consumer confidence over time it is desirable to conduct a lon-

gitudinal or panel study where the same individuals are surveyed at multiple points in time.

This allows us to study developments in confidence at the individual level. However, survey-

ing the very same individuals frequently likely deteriorates the quality of the survey. People

get irritated and they disconnect from the panel, thereby making the panel less efficient. Or

perhaps worse, respondents’ (reported) confidence levels may change due to being a mem-

ber of a panel, which is called panel conditioning. Most statistical agencies therefore collect

repeated cross-sections instead of panel data. This amounts to surveying a new group of indi-

viduals at each survey occasion, which implies that individuals are surveyed only once. The

design is illustrated in Figure 4.1a. Here we index time by t, where t = 1, . . . , T , individuals

by i, where i = 1, . . . , N and groups of individuals by g, where g = 1, . . . , G. A grey square

in row g and column t indicates that group g is requested to be surveyed at time t. While

repeated cross-sections reduce respondent burden and eliminate potential panel conditioning

bias, developments at the individual level cannot be derived without making many assump-

tions, see the excellent treatment in Moffitt (1993). Therefore it seems promising to collect

longitudinal data nevertheless, but to choose the design of the panel carefully such that the

adverse effects of repeated interviewing are negligible or, at least, manageable.

To design a panel for a specific purpose, three decisions have to be made. Firstly, as

individuals cannot be surveyed continuously, one has to decide on the total time-span that a

panel member is requested to join the panel, to be denoted by T ∗. To keep the total number

of panel members constant, one may decide to invite new individuals to join the panel when

existing panel members disconnect from the panel. This strategy is referred to as rotation,

see Patterson (1950) and Kish and Hess (1959). Naturally, the next step is to decide upon the

number of survey requests within this period, to be labelled n. Note that T ∗ and n together

constitute the sampling frequency f = n/T ∗ of the survey, which is equal to the reciprocal

of the time between subsequent survey occasions, or waves. Thirdly and finally, one needs

to decide when to conduct the n surveys within the time-span T ∗. We will refer to this



4.2 Methodology 45

aspect as date selection. A natural way is to divide the time-span T ∗ into n equally long

time periods, and to survey around the beginning of each sub period. Typically in this case

the implied sampling frequency f is lower than the desired data frequency. Again one may

therefore apply rotation, such that at each point in time t a new group of panel members is

surveyed and the data are collected continuously. The above strategy is mostly referred to

as time sampling. As an alternative, Segers and Franses (2007) proposed to choose the n

survey occasions at random, independently for each panel member. They show that in this

case of randomized sampling, data is collected to measure every possible autocorrelation

up to T ∗ − 1 lags, where the lower lag orders are sampled most frequently. This facilitates

the identification of any type of individual dynamics in the data and it allows for efficient

estimation.

To the best of our knowledge, the only consumer confidence indicator that is not obtained

from repeated cross-sections is the Index of Consumer Sentiment of the University of Michi-

gan. Michigan adopts a rotating panel design in which the respondents are requested to be

re-interviewed six months after the first interview, see Curtin (1982) for details. This design

is illustrated in Figure 4.1b. In our terminology, we would characterize the Michigan panel

as a rotating panel where T ∗ = 12 months and n = 2 survey occasions per individual and

time sampling is applied.

An example of our preferred randomized rotating panel, where two new individuals are

invited to join the panel in each time period, is shown in Figure 4.1c In this example, we set

the maximum time-span that a panel member is requested to join the panel, T ∗, equal to 8

and the number of survey requests, n, equal to 4. As a consequence, the sampling frequency

f is 0.5. Each dotted area encloses all survey requests assigned to one particular cohort of

individuals.



Figure 4.1 Panel designs to measure consumer confidence.
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4.3 Modeling Consumer Confidence

Notation and motivation

Typically, consumer confidence surveys are composed of 3 to 10 questions. Consumers are

asked whether they believe that the economic conditions in their country have improved in

the previous period or will improve in the next period. Often, similar questions are then

posed related to the respondents’ believes about their private financial situation. In practice,

the number of answer categories varies from 3 (negative, neutral or positive) to 201 (-100, 0,

+100). To obtain one score per individual, the negative answers are then deducted from the

positive answers, or the answers are simply averaged, depending on the design of the survey.

To convert the survey data to a daily measure of consumer confidence, we will need to

use an econometric model, as we will argue below. We aim to keep the model specification

flexible, such that the model can be easily adopted to match a wide range of consumer con-

fidence surveys. First, let us denote the response of individual i on the j-th survey question

on day t by zi,j,t, with i and t as before, and j = 1, . . . , J , where J denotes the total num-

ber of questions. Second, let zi,t be the overall confidence score of an individual, which is

generally obtained by simply taking the sum or the average of the J answers provided by

the individual i at time t. We assume that zi,t is scaled such that all scores are in the closed

interval [−1, . . . , 1], with -1 being the most negative response and 1 being the most positive

response possible. Finally, but not necessarily, the data is then further reduced by classifying

an individual as being in a negative, neutral or positive state of confidence, using

qi,t =


1 if zi,t > τ

0 if |zi,t| ≤ τ

−1 if zi,t < −τ

(4.1)

where qi,t is the final classification of the individual and τ is a threshold parameter. We

collect the values of qi,t in the I × T matrix Q, defined as
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Q =



q1,1 q1,2 · · · q1,t · · · q1,T

q2,1 q2,2 · · · q2,t · · · q2,T

...
...

...
...

qi,1 qi,2 · · · qi,t · · · qi,T
...

...
...

...

qI,1 qI,2 · · · qI,t · · · qI,T


(4.2)

To obtain a daily consumer confidence index ct, one may calculate the average of the col-

lected qi,t’s. This would be equal to the proportion of positive responses minus the proportion

of negative responses. The matrix of responses Q is sparse because of two reasons. First,

by design, in each wave only a limited number of respondents is requested to be surveyed.

Second, respondents may decide not to participate in the survey. This implies that taking the

average of qi,t would yield estimates with large measurement error. We can produce more

accurate daily averages if we impute the missing values inQ, before taking the averages over

all respondents. To impute the missing values in Q, we employ a Markov transition model.

The Markov Transition model

As we want to focus on the number of positive and negative responses while also incor-

porating dynamics, we use a Markov Transition model, see Ross (2007) among others for

a detailed assessment. This model uses transition probabilities to reflect the probability of

transferring from one state of confidence to the next. We jointly denote these probabilities

by the transition matrix P . For the situation with a positive, neutral and negative state, we

define P as

P =


p1,1 p1,0 p1,−1

p0,1 p0,0 p0,−1

p−1,1 p−1,0 p−1,−1

 (4.3)

The elements pl,m correspond to the probability of transitioning in one day from state l

to state m: P(qi,t = m|qi,t−1 = l), with l,m ∈ {−1, 0, 1}. The k-day transitioning matrix

Pk can now simply be obtained by taking the k-th power of P : Pk = P k. We denote its
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elements by pk,l,m. Note that it is straight-forward in this setup to include more states. Using

extra states allows to also capture slightly positive and negative states of confidence.

Given the elements of the matrix P , we can estimate the probability that individual i is in

state l at time t, to be denoted by πi,t,l. For this purpose, we need to administer two additional

variables, for each qi,t. The first is the number of days that have passed since the last survey

response of individual i at time t, to be denoted by ∆t. Further, denote the day of the last

response by s = t−∆t. The second is the value of the state qi,s. Then

P(qi,t = l) = πi,t,l = p∆t,qi,s,l = [P∆t]qi,s,l (4.4)

In order to estimate the elements of P , we use a maximum likelihood approach (see

Cameron and Trivedi, 2005, among others), which we set up as follows. First, we construct

the individual likelihood contribution Li,t. Given an estimate P̂ , we can calculate an estimate

of πi,t,l, using (4.4). But for some combinations of i and t, qi,t is known. The likelihood of

observing such a single data point is captured by Li,t =
∏1

l=−1 π
I[qi,t=l]
i,t,l , which is equal to 1

if there is no response for individual i at day t or if the response qi,t is not state l. The latter

is equal to the estimated state probability πi,t,l if qi,t = l. Next, we find the total likelihood

by multiplication of the individual contributions, for all time periods and for all individuals,

that is,

L =
I∏
i=1

T∏
t=1

Li,t =
I∏
i=1

T∏
t=1

1∏
l=−1

π
I[qi,t=l]
i,t,l (4.5)

For reasons of numerical stability and feasibility, we maximize the logarithm of L, which

is given by

logL =
I∑
i=1

T∑
t=1

logLi,t =
I∑
i=1

T∑
t=1

1∑
l=−1

I[qi,t = l] log πi,t,l (4.6)

We need to maximize logL over the elements of matrix P . For each row of P it is the case

that if two of the elements of that row are known, the third element can be calculated because

the elements must sum to 1. The number of parameters over which we must maximize this

function is thus equal to six.
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Once consistent estimates of the model parameters are obtained, we impute the missing

values in the matrix Q by the difference between the probability of being in the positive and

the probability of being in the negative state, at each wave, that is,

q̂i,t = P(qi,t = 1)− P(qi,t = −1) = π̂i,t,1 − π̂i,t,−1 (4.7)

The value of the aggregated consumer confidence index, ct, is then equal to the average

of these state estimates:

ct =
1

I

I∑
i=1

q̂i,t (4.8)

4.4 Empirical Illustration

We illustrate the usefulness of our method of data collection and the Markov transition model

by showing how the data collection method and model can be employed to produce forecasts

of household consumption.

Data collection

To collect consumer confidence data at the individual level using our data collection method,

we invited all alumni who graduated as a BSc or MSc at our institute to join an expert

panel specifically set up for the occasion. A first group of alumni was invited to join the

panel in January 2010, and a second group was invited to join the panel in September 2011.

The alumni who accepted the invitation were requested to complete a short questionnaire

at most four times per year. The invitations were sent out every week on Monday at 9 am.

In order to be able to compare our indicator to the official CCI of Statistics Netherlands

(SN), we used the same questionnaire as SN. The survey consists of five questions regarding

the economic climate in The Netherlands and the respondents’ willingness to buy durable

goods, see Appendix 4.A for details. The number of answer categories (7 or 21) as well

as the sampling strategy (time-sampling or randomized) was varied across the respondents.

Over the period January 4, 2010 up to October 13, 2014, 250 alumni participated in the

experiment. We sent out 3625 survey requests. The response rate was 33.9%. We fixed the
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Table 4.1 Estimated transition matrix of the Markov switching model with its implied long-term properties

Transition Transition to state (day-to-day) Transition to state (90 days) Steady
from state Optimistic Neutral Pessimistic Optimistic Neutral Pessimistic state
Optimistic 0.996 0.000 0.004 0.732 0.128 0.141 0.418

Neutral 0.006 0.206 0.788 0.194 0.387 0.420 0.279
Pessimistic 0.000 0.730 0.270 0.191 0.388 0.421 0.304

threshold parameter τ in Equation (1) at 0.1, which resulted in three categories of comparable

size.

In-sample results

We have estimated the transition probabilities pl,m by maximizing the likelihood function as

discussed in Section 4.3. The results are shown in Table 4.1. The day-to-day transition matrix

is quite similar to the identity matrix, which suggests that a respondent’s state of confidence

typically does not change on a daily basis. Therefore, in the second panel of Table 4.1,

we also report the transitions over a period of 90 days. 73.2% of the respondents who are

optimistic about the economy remain positive after 90 days, while 12.8% becomes neutral

and 14.1% becomes pessimistic. Staying in the neutral or the pessimistic state after 90 days

is more unlikely than staying in the optimistic state with probabilities of 38.7% and 42.1%,

respectively. Finally, in the third panel of Table 4.1 we report the steady state distribution.

In the long-run, 41.8% of our respondents is optimistic, 27.9% is optimistic and 30.4% is

pessimistic about the economy. These implications on the longer horizon seem realistic in

the context of our data, as the number of responses is approximately the same for each state

of confidence.

Construction of the index

Next, we discuss how we can use our estimates of ct to forecast monthly consumption in

the Netherlands. We aim to compare our forecasts to the forecasts one would obtain using

the official CCI of SN, to be denoted by CCISN . SN only collects their data during the first

ten working days of each month. To allow for a fair forecast comparison, we construct our

monthly CCI from the daily CCI by taking the value obtained on the tenth working day of

each month only. We denote our monthly CCI by CCIMS .
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Besides our two main indicators, CCISN and CCIMS , we consider two additional in-

dicators, which cannot be observed if the data are collected using repeated cross-sections.

The first aims capture the spread in confidence across individuals, and is defined as the time-

varying standard deviation of q̂i,t:

SMS,t =

√√√√ 1

I − 1

I∑
i=1

(q̂i,t − ct)2 (4.9)

The second indicator measure the rate at which respondents have recently changed their

state of confidence. We define this rate of change as the aggregated absolute 30 day change

in q̂i,t:

AMS,t =
I∑
i=1

|q̂i,t − q̂i,t−30| (4.10)

Figure 4.2a shows the developments in both the CCIMS and the CCISN over the period

April 2010 to October 2014. First of all, note that the average level of the novel indicator is

about 43 points higher than that of SN. This is most probably due to the fact that our panel

consists of university alumni only, who are generally positive about their financial situation,

while SN invites aims to select a representative sample of the population. However, the

cycles of the two indicators are very similar, with the most prominent turning point being

the moment when the impact of the European debt crisis became apparent. Finally, we note

that there tends to me more short-term variation in the indicator of Statistics Netherlands,

compared to the model based indicator. Figure 4.2b and 4.2c display the spread, SMS,t,

and the activity, AMS,t, of the novel indicator. Both indicators show an increase during the

freefall of the index in the summer of 2011 and peak in September 2011, but also distinct

fluctuations that do not necessary coincide with developments in the index.

Forecasting comparison

The target variables in our forecast comparison are Dutch national household consumption

and its four subcomponents. Household consumption is measured by SN and is subdivided

into SERVICES AND GOODS, where GOODS are further subdivided into FOOD, DRINK AND

TOBACCO, DURABLES and OTHER GOODS. DURABLES are defined as goods that in prin-

ciple last more than one year, such as clothes and textiles, shoes, furniture, consumer elec-



Figure 4.2 Level, spread and activity of our consumer confidence index.

a. Level

b. Spread

c. Activity
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tronics and cars. OTHER GOODS include energy, motor fuels and all other consumer goods

that cannot be classified as FOOD, DRINK AND TOBACCO, or DURABLES.

To forecast consumption one month ahead, we consider three basic forecasting models.

In the first we only include the level of the consumer confidence indicator of SN, CCISN ,

and its first difference, alongside with a constant term and AR(1) dynamics:

yt = α + βCCISN,t−1 + γ∆CCISN,t−1 + φyt−1 + εt (4.11)

In the second forecasting model, we replace CCISN by our index CCIMS:

yt = α + βCCIMS,t−1 + γ∆CCIMS,t−1 + φyt−1 + εt (4.12)

Finally, the third forecasting model is equal to (4.12) but now also includes the spread

and activity indicators, St and At:

yt = α + β1CCIMS,t−1 + γ1∆CCIMS,t−1 + β2SMS,t−1 + γ2∆SMS,t−1+

β3AMS,t−1 + γ3∆AMS,t−1 + φyt−1 + εt (4.13)

The three forecasting models are all estimated using Ordinary Least Squares.

In the first set of columns in Table 4.2, we display the R2 values of models (4.11), (4.12)

and (4.13). All models for the components FOOD, DRINK AND TOBACCO and TOTAL CON-

SUMPTION explain less than 10% of the variation in the data. This suggests that confidence

indicators are less useful for explaining the latter two components. In contract, SERVICES

is explained best by the models, with a R2 of 0.93 for models (4.11) and (4.12) and 0.94

for model (4.13). This series is relatively persistent, as demonstrated by the estimated value

of the AR parameter φ (0.89, p-value: 0.08), see columns 4 and 5. We then test whether

the additional four parameters of model (4.13) relative to model (4.12) are jointly significant

using an F-test. The corresponding p-values are shown in column 6. For the components

DURABLE GOODS, OTHER GOODS and SERVICES, (4.12) is rejected in favor of (4.13) at

the 10% significance level. This suggests that the additional components St and At have

indeed explanatory power.
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Table 4.2 Diagnostics of the estimated forecasting models (4.11), (4.12) and (4.13)

R2 p-value of
Target variable (4.11) (4.12) (4.13) φ in (4.13) SEφ,(4.13) (4.13) vs (4.12)

Food, drinks and tobacco 0.05 0.06 0.17 -0.15 0.17 0.26
Durable goods 0.37 0.25 0.38 -0.07 0.17 0.06
Other goods 0.59 0.56 0.63 0.67 0.10 0.09

Services 0.93 0.93 0.94 0.89 0.08 0.03
Total consumption 0.06 0.06 0.10 0.00 0.17 0.76

Table 4.3 Relative forecast errors of the forecasting equations (4.12) and (4.13), compared to (4.11)

Target variable2 (4.12): CCISN , level only (4.13): CCISN , level, spread, activity
Food, drinks and tobacco 0.998 0.901

Durable goods 1.127 0.877
Other goods 1.127 0.804

Services 0.878 0.474
Total consumption 0.989 0.957

Average 1.024 0.802

Finally, we compare the forecasting performance of models (4.11), (4.12) and (4.13) in

Table 4.3. The first column displays the ratio of the forecast error of (4.12) to the forecast

error of (4.11). As a result, values below 1 indicate that (4.12) outperforms (4.11). Since

on average, however, the ratio is close to 1, we conclude that the level of the novel indica-

tor CCIMS performs approximately as good as model (4.11), which contains the indicator

CCISN . As both models contain the same number of parameters, this indicates that no clear

decision between both models can be made. The next column displays the ratio of the fore-

cast error of (4.13) to the forecast error of (4.11). Model (4.13) has relative forecast error

variances that are 20% smaller than those of (4.11), on average. Especially the forecasts for

components DURABLE GOODS, OTHER GOODS and SERVICES benefit from the use of the

novel indicator and its additional components St and At.

4.5 Conclusions

In this chapter we proposed to collect randomized panel data rather than repeated cross-

sections to measure consumer confidence. Randomized panel data allow us to not only ob-

serve longitudinal changes in confidence across our respondents, but also to observe changes

2Measured in terms of the total value, where the average value over 2000 is normalized to be 100.
Source: http://www.cbs.nl/en-GB/menu/themas/dossiers/conjunctuur/publicaties/conjunctuurbericht/inhoud/
conjunctuurklok/toelichtingen/ck-06.htm

http://www.cbs.nl/en-GB/menu/themas/dossiers/conjunctuur/publicaties/conjunctuurbericht/inhoud/conjunctuurklok/toelichtingen/ck-06.htm
http://www.cbs.nl/en-GB/menu/themas/dossiers/conjunctuur/publicaties/conjunctuurbericht/inhoud/conjunctuurklok/toelichtingen/ck-06.htm
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in the spread in confidence across individuals, as well as changes in rate at which respondents

change their state of confidence over time.

We demonstrated the usefulness our approach in an application to measuring consumer

confidence in The Netherlands over the period April 2010 to October 2014 with the purpose

to produce one-month ahead forecasts of Dutch consumption. We showed that the incremen-

tal information content in the novel panel data indicator improves the forecasting accuracy

by 20% on average.

We mention various directions for further research. The first is that we can now corre-

late significant weekly changes with weekly observed macroeconomic variables, in order to

study whether consumer confidence has predictive value. Indeed, currently most such studies

concern monthly observed cross-sectional data, and it may well be that substantial informa-

tion is lost. We may also consider enriching the model with various explanatory variables

that do correlate with consumer confidence but do not necessarily correlate with the target

variable. For example, it has been hypothesized that factors such as the weather and specific

events such as terrorist attacks have an impact on consumer confidence. An indicator that

is corrected for one or more of these factors might be a better predictor of the future course

of the economy than the uncorrected indicators that are currently in use. Finally, it might

be a worthwhile endeavor to extend the Markov transition model. For example, we have

assumed constant transition probabilities, while in practice transition probabilities might be

time-varying. This might be particularly relevant when the economy shifts between expan-

sions and recessions.
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4.A The Consumer Confidence Survey of Statistics Nether-

lands

As opposed to the consumer confidence indicator measured by the European Commission,

the indicator measured by Statistics Netherlands not only concerns consumers’ opinions on

their financial situation, the economy in general, willingness to save and unemployment

in the next twelve months, but also consumers’ present situations and their opinions on the

previous twelve months. The two indicators show roughly the same developments overtime.3

Consumer confidence is based on five questions from a more elaborate consumer survey.

These questions are subdivided into a section on the economic climate and a section on the

respondent’s willingness to buy. The questions are formulated as follows:

Economic Climate

1. How do you think the general economic situation in this country has changed over the

last twelve months?

Possible answers: At present, it is better (1) / the same (0) / worse (-1)

2. How do you think the general economic situation in this country will develop over the

next twelve months?

Possible answers: It will be better (1) / the same (0) / worse (-1)

Willingness To Buy

3. How does the financial situation of your household now compare to what it was twelve

months ago?

Possible answers: At present, it is better (1) / the same (0) / worse (-1)

4. How do you think the financial situation of your household will change over the next

twelve months?

Possible answers: It will be better (1) / the same (0) / worse (-1)
3See http://www.cbs.nl/en-GB for details.

http://www.cbs.nl/en-GB
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5. Do you think that at present there is an advantage for people to make major purchases,

such as furniture, washing machines, TV sets, or other durable goods?

Possible answers: Yes, now it is the right time (1) / It is neither the right nor the wrong

time (0) / No, it is the wrong time (-1)

The economic climate indicator is computed as the summed score of questions 1 and 2

averaged across all individuals. Similarly, the willingness to buy indicator is computed as

the summed score of questions 3 to 5 averaged across all individuals. Finally, consumer

confidence is defined as the average of all five scores.



Chapter 5

How informative are the unpredictable

components of earnings forecasts?

Based on de Bruijn and Franses (2013). Authors contributed following a 90% / 10% split.

Abstract

An analysis of about 300000 earnings forecasts, created by 18000 individual forecasters

for earnings of over 300 S&P listed firms, shows that these forecasts are predictable to a

large extent using a statistical model that includes publicly available information. When we

focus on the unpredictable components, which may be viewed as the personal expertise of

the earnings forecasters, we see that small adjustments to the model forecasts lead to more

forecast accuracy. Based on past track records, it is possible to predict the future track record

of individual forecasters.

Acknowledgements: We are grateful to Roy Batchelor, Scott Stickel and workshop par-

ticipants of the International Symposium on Forecasting in Boston (2012) and Rotterdam

(2014) for their helpful comments.
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5.1 Introduction

Earnings forecasts can provide useful information for investors. They have been the focus

in many studies, where typically their accuracy and their managerial usefulness are studied,

see for example Abarbanell et al. (1995), Abarbanell and Lehavy (2000, 2003), Bradshaw

et al. (2013), Bradshaw et al. (2012), Givoly et al. (2009), and Mikhail et al. (1999, 2004).

In contrast, in our present study we focus on the predictability of earnings forecasts, and in

particular we aim to learn more about the non-predictable part.

When investors rely on these forecasts, it is important to have insights into how earnings

forecasters create their forecasts. Knowledge about the key drivers of the earnings forecasts

is relevant as it allows for the analysis of the added value of earnings forecasters. More

precise, one may want to disentangle the part of earnings forecasts that can be predicted using

publicly available information from the part involving private knowledge that the earnings

forecasters themselves have. In the present chapter we will first estimate the predictable part

and then focus on the usefulness of the unpredictable part. That is, to what extent does the

genuine contribution of an earnings forecaster, beyond that part that can be predicted using

publicly available information, lead to more forecast accuracy?

Our present study extends the important study of Stickel (1990) in various dimensions.

He investigated whether the change in the forecast by an individual forecaster could be pre-

dicted by a change in the average forecast of other forecasters, the deviation of the fore-

caster’s previous forecast relative to that total average and the cumulative stock returns since

a previous forecast. In Stickel (1990) it is concluded that virtually all explanatory power is

associated with the first variable, that is, the change in the average forecast.

We update and extend in several ways. First, we use recent data for the period 1995 to

2011. Second, instead of looking at changes in forecasts we consider the actual levels, in

particular as we want to zoom in on the unpredictable part of the forecasts. Third, we allow

for the inclusion of more potential explanatory variables in our statistical model. And last,

but most importantly, we focus on the added value of the earnings forecasts and seek to derive

informative rules to discern the better forecasters from the lesser performing forecasters.

A summary of our findings is the following. A key predictor of the earnings forecasts ap-

pears to be the average of all available earnings forecasts concerning the same forecast event.

A second predictor is the most recent difference between the individual forecaster’s forecast
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and the average of the currently available forecasts. As the sign is positive, this means that a

forecaster who previously was more optimistic about the earnings of a particular firm can be

expected to persist in quoting above-average values. Other variables do have some predictive

value in individual cases, but we do not find consistent effects. When we focus on the unpre-

dictable components then one of our key findings is that a larger unpredictable component

associates with less forecast accuracy. We also document that alternative weights to these

unpredictable components can lead to more accuracy. Separating the data in an estimation

sample and evaluation sample allows us to draw our final conclusion which is that past track

records of forecasters have predictive value for future track records.

The outline of this chapter is as follows. In Section 5.2 we provide a concise summary of

the empirical evidence in the literature. In Section 5.3 we discuss the data and in Sections 5.4

and 5.5 we present our results. Section 5.6 summarizes our findings.

5.2 Literature review

Earnings forecasts have been the topic of interest for many academic studies. For an exten-

sive discussion of research on earnings forecasts in the period 1992-2007, see Ramnath et al.

(2008). For earlier overviews we refer to Schipper (1991) and Brown (1993).

One stream of earnings forecasts research has focused on relationships between fore-

cast performance and forecaster characteristics. Performance can be measured by forecast

accuracy and by forecast impact on stock market fluctuations. The characteristics of these

performance measurements have been related to timeliness (Cooper et al., 2001; Kim et al.,

2011), the number of firms that the forecaster follows (Kim et al., 2011; Bolliger, 2004), the

firm-specific experience of the forecaster (Bolliger, 2004), age (Bolliger, 2004), the size of

the firm for which the forecasts are created and the size of the company where the forecaster

works (Kim et al., 2011; Bolliger, 2004), and whether the forecaster works individually or in

a team (Brown and Hugon, 2009).

A second stream of research concerns the behaviour of an earnings forecaster and how it

is related to what other forecasters do. In particular, herding behaviour is considered, which

occurs when forecasters produce forecasts that converge towards the averages of those of

the other forecasters. There have been efforts to categorize earnings forecasters into two

groups, corresponding to leaders and followers or to innovators and herders (Jegadeesh and
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Kim, 2010; Clement and Tse, 2005). This is relevant for many reasons as such different

forecasters may consult different sources of information, which in turn can be useful for

investors to incorporate this information into their investment decisions. Indeed, a leading or

innovative forecaster is perhaps more useful than a herding forecaster. This does not directly

imply that leading forecasts are also more accurate, as it is documented that accuracy and

the type of forecaster are not necessarily related. In fact, it has been documented that the

aggregation of leading forecasts is a fruitful tactic to produce accurate forecasts (Kim et al.,

2011).

Recently, Clement et al. (2011) have studied the effect of stock returns and other fore-

casters’ forecasts on what forecasters do. In contrast to Jegadeesh and Kim (2010) and

Clement and Tse (2005), Clement et al. (2011) do not consider categorizing the forecasters

into different clusters. Instead, they consider how the first forecast revision after a forecast

announcement is affected by how the stock market and other forecasters have reacted to that

forecast announcement. Landsman et al. (2012) also look at how earnings announcements

affect the stock market, where these authors focus on how mandatory IFRS adoption has

moderated this effect. Sheng and Thevenot (2012) propose a new earnings forecast uncer-

tainty measure, which they use to demonstrate that forecasters focus more on the information

in the earnings announcement if there is more dispersion in the available earnings forecasts.

In sum, earnings forecasts have been studied concerning their performance and a few of

their potential drivers. In this chapter we extend the knowledge base by considering many

more drivers of earnings forecasts, while we pay specific attention to the relevance of the

unpredictable component of earnings forecasts.

For our study we go back to Stickel (1990) and seek to extend this important study in

various dimensions. In that paper it is concluded that in a statistical model for predicting

changes in earnings forecasts the key explanatory variable is the change in the average of all

other forecasts. We extend this study by considering more and more recent data and also by

including more variables in a model for the levels (and not the changes) of earnings forecasts.

A key extension however is that we use the statistical model to disentangle the predictable

component from the unpredictable component, and then we zoom in on the latter component.

We do so to see to what extent the unobservable knowledge of forecasters contributes to the

quality of the earnings forecasts. Also, we aim to examine if forecasters who successfully
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rely on their knowledge do so persistently. That is, is a past successful track record an

indicator for future success?

5.3 Data and sample selection

Our data have been collected from WRDS1, using the I/B/E/S database for the analyst fore-

casts and the CRSP data for the stock prices and stock returns.

Concerning the earnings forecasts, we have collected data for all firms which have been

part of the S&P500 during the period 1995 to 2011. Sometimes the sample size was too

small, and in other cases we could not properly link the forecasts with the firms, so in the

end we have useful information concerning 316 firms with some 270000 earnings forecasts.

We focus on the within-year annual earnings forecasts, that is, the forecasts that are produced

to forecast the earnings of the current year.

The structure of the data is illustrated in Table 5.1. This figure shows an “x” for the

moment when a forecaster makes a forecast available, which is not necessarily the same

moment that other forecasters give their quotes as not all forecasters have the same frequency

of quotes. This figure also shows the variables which we measure at the highest frequency

and these are the daily observed stock returns. Finally, this figure shows double vertical lines

depicting the moments of the earnings announcements, at which point the realization occurs

of the variable that is to be forecasted. We only use the within-year earnings forecasts, which

means that we only include forecasts for the next upcoming annual earnings announcement,

and hence we abstain from forecasts for year T made in year T − 1.

Some descriptives of the data are shown in Table 5.2. The data until and including 2005

cover the estimation sample, and the data from 2006 onwards constitute the evaluation sam-

ple. We make this distinction in order to examine if past track records have predictive value

for future track records. And, we also want to see if estimated parameters in the estimation

sample provide reasonably constant inference in a post-estimation period.

All data are used to create and evaluate the statistical models for the earnings forecasts.

For that purpose we have data on 18338 forecasters and more than 270000 forecasts, with

the latter about equally spread over the estimation and evaluation samples. When it comes

1Wharton Research Data Services (WRDS) was used in preparing this chapter. This service and the data
available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third-party
suppliers. http://wrds-web.wharton.upenn.edu/wrds/

http://wrds-web.wharton.upenn.edu/wrds/


Table 5.1 An example
of the data format, with an x indicating an earnings forecast and the double vertical lines indicating when a
new yearly earnings announcement takes place. This figure shows for five forecasters for two years a variety of
hypothetical patterns of forecasts, including analysts that follow a very regular forecasting pattern, or the oppo-
site, and including forecasters that quit producing forecasts or that join during a later year. In contrast, (daily)
returns are shown as an example of the explanatory variables, which are observed at every measurement point.

Analyst 1 x x x x x x
Analyst 2 x x x x
Analyst 3 x x x
Analyst 4 x x x
Analyst 5 x x x x x x x x x
Returns r r r r r r r r r r r r r r r r r r

Table 5.2 The number of firms, fore-
casters and forecasts for each upcoming section and subsection. The number of forecasts is shown separately
for the estimation sample, which is up until 2005, and the evaluation sample, which is from 2006 onwards.

Number of Number of Number of forecasts
firms forecasters Estimation sample Evaluation sample

Section 5.4 and 5.5.1 316 18338 146319 126651
Section 5.5.2 316 1835 52236 36403
Section 5.5.3 316 4541 90190 28000
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to forecaster-specific regressions and correlations, we need enough data points to run these

computations, and then our sample size drops to about one-third of the forecasts. Still, this

is a large database and therefore we are confident that our results below are informative.

5.4 Predicting earnings forecasts

To create the unpredictable components of earnings forecasts, we first have to create the

predictable components. For this we put forward a statistical model to predict earnings

forecasts using information publicly available up until the day before the publication of the

earnings forecast. In this section we first introduce the statistical model that we use to make

predictions of the earnings forecasts. We present the explanatory variables and the relevant

estimation results. Next, we apply a correction method to account for the firms for which we

have a small number of forecasts.

5.4.1 The statistical model

For predicting the earnings forecasts we use a linear regression model. The list of explanatory

variables is presented in Table 5.3.
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Following Stickel (1990), we expect earnings forecasters to look at the recent forecasts of

competing forecasters. We thus include in our model the average of all most recent forecasts

across individual forecasters. Note that we only include forecasts that have been made within

the same year for the same forecast event.

We also include in our model several variables that are related to this average forecast.

First, the average forecast may contain more useful information when it is based on a larger

number of forecasters. To see whether this holds true, we include an interaction term of the

average forecast with an indicator function that is 1 if the number of forecasters is below

10 and that is 0 otherwise. The contribution to the fit of average forecast may also increase

when the moment of the actual announcement of the true value of the earnings comes closer.

We therefore include an interaction term with an indicator function which is 1 when the data

concern the last two weeks before the announcement, and 0 otherwise. The final explanatory

variable related to the average forecast is the day-to-day change in this average forecast.

Indeed, when the average forecast has increased on one day, then individual forecasters could

be tempted to extrapolate this growth to the next day.

The second set of explanatory variables concerns the own previous forecasts of a fore-

caster. We include the most recent forecast and the difference between this previous forecast

and the average forecast at that particular moment in time. These two variables can allow for

persistence in the opinions of a forecaster, implying that forecasters can be more optimistic

or pessimistic for some period of time.

Finally, the third set of explanatory variables concerns the stock market. We include

the most recent stock price of the firm for which its earnings are predicted. Also, recent

changes in the stock price can be relevant, and for that purpose we include the daily returns

and the returns relative to the most recent moment when an individual forecaster produced

a forecast. Next to these three firm-related stock prices, we include similar variables for the

entire S&P500 stock exchange.

We estimate the parameters in the regression models using Ordinary Least Squares (OLS)

for data for each of the 316 firms, and summaries of the estimation results across these 316

firms are presented in Table 5.4. The first five columns show results on the OLS based

estimates, including the mean of the estimated parameters, the median and their standard

deviation and also the 5% and a 95% percentiles of these estimates. The next two columns

concern a summary of the standardized estimates, which are the estimates that are found if
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Table 5.4 A summary of estimation results
of forecasting earnings forecasts. Results are for the estimation sample, which amounts to 316 firms, 18338
forecasters and 146319 forecasts. The variable to be explained concerns the earnings forecasts. As explanatory
variables we include the variables mentioned in Table 2. The regression is run individually for each firm, and
the table shows statistics which summarize these results. The first five columns contain summary results on
the regular parameter estimates (average, median, standard deviation and bounds of a 90% interval). The last
three columns show results for the standardized estimate, which is included to compare contributions to the
fit. The standardized estimate is defined as the estimate that would have been obtained had the regressor been
standardized beforehand (which is a transformation to having an average of 0 and a standard deviation of 1).

Estimate Standardized estimate
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Intercept -0,028 -0,026 0,278 -0,395 0,229
Average Forecast 1,050 1,077 0,384 0,557 1,483 0,490 0,491 96,9%
Average Forecast x I[nrF < 10] 0,018 0,005 0,172 -0,053 0,078 0,001 0,004 0,0%
Average Forecast x I[TUA > 14] -0,038 -0,034 0,292 -0,212 0,058 -0,017 0,025 0,3%
∆ Average Forecast 0,765 0,607 1,053 -0,526 2,438 0,005 0,006 0,0%
∆ Previous Forecast 0,498 0,548 0,359 -0,151 1,051 0,029 0,030 0,4%
Previous Forecast -0,046 -0,078 0,273 -0,388 0,375 -0,028 0,076 2,3%
Stock Price Firm 0,002 0,001 0,004 -0,001 0,007 0,009 0,013 0,1%
Stock Returns Firm 0,302 0,150 1,039 -0,264 1,291 0,005 0,007 0,0%
Cumulative Stock Returns Firm 0,054 0,018 0,206 -0,092 0,285 0,003 0,005 0,0%
Stock Index S&P500 0,000 0,000 0,002 -0,001 0,002 0,001 0,009 0,0%
Stock Returns S&P500 -0,214 -0,096 1,226 -2,155 1,421 -0,001 0,004 0,0%
Cumulative Stock Returns S&P500 -0,032 -0,006 0,238 -0,408 0,256 0,000 0,005 0,0%

the variables are first all standardized by subtracting the mean and scaling the variance to 1.

Such standardized estimates can be helpful when comparing the contribution of each of the

variables to the overall fit. In the last column of Table 5.4 we present these contributions as

percentages.

The results in Table 5.4 show that, on average, the coefficient of the recent average fore-

cast is about 1. The distribution of this effect across firms, indicated by standard deviation

and percentiles) indicates that the sign of this effect is consistently positive. When we scroll

down the table, we see that none of the other variables have this property. Also, looking

at the contribution to the fit, it is clear that the average forecast is most important, and that

the previous forecast and its difference to the average forecast are a distant second and third

useful explanatory variable.

To continue with these regression models, Table 5.5 shows summary statistics on the t-

statistic values for each of the explanatory variables. The last column of this table shows that

all variables are significant for at least 20% of the firms, but it also repeats the finding that
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Table 5.5 A summary of t-statistics when forecasting earnings forecasts. Results are for the estimation
sample, which amounts to 316 firms, 18338 forecasters and 146319 forecasts. The variable to be explained
concerns the earnings forecasts. As explanatory variables we include the variables mentioned in Table 2.
The regression is run individually for each firm, and the table shows statistics which summarize these results.
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Intercept -0,986 1,920 48,4%
Average Forecast 9,865 9,865 96,4%
Average Forecast x I[nrF < 10] 0,530 1,118 27,9%
Average Forecast x I[TUA > 14] -1,662 2,212 51,6%
∆ Average Forecast 1,680 1,766 47,2%
∆ Previous Forecast 4,794 4,794 78,0%
Previous Forecast -0,804 1,599 38,6%
Stock Price Firm 1,928 2,402 55,8%
Stock Returns Firm 1,378 1,653 40,1%
Cumulative Stock Returns Firm 0,730 1,329 32,9%
Stock Index S&P500 0,151 1,928 49,3%
Stock Returns S&P500 -0,395 1,192 24,9%
Cumulative Stock Returns S&P500 -0,110 1,196 26,7%

most of the variables are not consistent in the sign of their effect (and thus, the sign of their

t-statistic). Again, the average forecast is seen to be most relevant as it is associated with the

largest percentage of significant cases. Additionally, the difference of the previous forecast

to the average stands out with a higher percentage significant and a high median value of the

t-statistic (78% of the cases).

5.4.2 Correcting for small sample sizes

The results in Tables 5.4 and 5.5 show that various explanatory variables do have a statisti-

cally significant effect, but at the same time this effect does not have a consistent sign. The

latter causes the finding in Table 5.4 that on average these effects are equal to 0. Now it could

be that this finding is a small-sample effect, as for some firms we only have a small number

of earnings forecasts.
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To correct for these small sample sizes, we employ the following method that is detailed

in Appendix 5.A. This method amounts to an assumption that the collection of firm-specific

(population) parameters for one of the variables corresponds to a normal distribution. Sup-

pose that the parameters of this distribution are known. As a consequence, there are two

sources of information for the value of each individual estimated parameter, and these are

the estimated OLS coefficient and the parameters of this common distribution. The optimal

choice is a weighted average of these two values, with weights determined by the standard

error of the estimated coefficient and the standard deviation of the underlying distribution.

For firms with only a few observations, the weight for the estimated coefficient most likely

will be low, and the best estimate will thus be relatively close to the mean of the common

distribution. On the other hand, for firms with many observations the weight of the estimated

coefficient will be high and the best estimate will not deviate much from the OLS estimated

parameters.

In our application, we of course do not know the values of the common distribution

in advance. We therefore apply an iterative process. First, the two parameter values are

initialized on the sample mean and standard deviation of all OLS estimates. Then, we adjust

the estimates using the weights. After adjustment, we use the weighted mean and weighted

standard deviation to construct a new value of the two parameters, with weights equal to the

reciprocal of the estimated standard error. This is again followed by a new adjustment of the

estimated parameters, and then again the calculation of a new set of parameters. We do this

until convergence.

When we apply this method we obtain the summarized results in Table 5.6. Comparing

the numbers in this table with those in Table 5.4, we can see that the average and median

values have not changed much. In contrast, and as expected, the standard deviation and

the width of the 90% interval have clearly decreased. There are now more variables that

are (almost) consistent in their estimated sign, and among them are the parameters for firm-

specific stock price and the S&P500 stock market index. At the same time, however, the

contribution to the fit as reported in the last column has stayed about the same.

To conclude, whether we employ a small-sample correction or not, the key result is that

the recent past average forecast is the main explanatory variable for current earnings fore-

casts. At the same time, for many individual cases (out of the 316 cases) we find various

other variables to be relevant, and we will use these variables in our analyses below. Like



Table 5.6 A summary of estimation results of forecasting earnings forecasts,
after using the correction method to account for small-sample error. Results are for the estimation sample,
which amounts to 316 firms, 18338 forecasters and 146319 forecasts. The variable to be explained concerns
the earnings forecasts. As explanatory variables we include the variables mentioned in Table 2. The regression
is run individually for each firm, and the table shows statistics which summarize these results. The first five
columns contain summary results on the regular parameter estimates (average, median, standard deviation
and bounds of a 90% interval). The last three columns show results for the standardized estimate, which is
included to compare contributions to the fit. The standardized estimate is defined as the estimate that would
have been obtained had the regressor been standardized beforehand (which is a transformation to having an
average of 0 and a standard deviation of 1). The correction method is based on the assumption of an underlying
normal distribution out of which each parameter (for the different firms) is drawn. This provides additional
information on the firm-specific estimate especially in the case when the firm has only a few observations.
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Intercept -0,019 -0,021 0,051 -0,113 0,068
Average Forecast 1,097 1,094 0,134 0,880 1,287 0,479 0,479 98,5%
Average Forecast x I[nrF < 10] 0,003 0,004 0,011 -0,012 0,019 0,001 0,002 0,0%
Average Forecast x I[TUA > 14] -0,048 -0,040 0,063 -0,161 0,018 -0,019 0,022 0,2%
∆ Average Forecast 0,741 0,687 0,409 0,148 1,444 0,005 0,005 0,0%
∆ Previous Forecast 0,553 0,564 0,192 0,206 0,865 0,029 0,029 0,4%
Previous Forecast -0,081 -0,087 0,120 -0,253 0,117 -0,031 0,044 0,8%
Stock Index Firm 0,001 0,001 0,001 0,000 0,002 0,009 0,009 0,0%
Stock Returns Firm 0,160 0,120 0,175 -0,043 0,508 0,005 0,005 0,0%
Cumulative Stock Returns Firm 0,016 0,013 0,022 -0,013 0,055 0,002 0,003 0,0%
Stock Index S&P500 0,000 0,000 0,000 0,000 0,000 0,000 0,005 0,0%
Stock Returns S&P500 -0,087 -0,081 0,214 -0,410 0,251 -0,001 0,001 0,0%
Cumulative Stock Returns S&P500 -0,002 -0,002 0,036 -0,065 0,060 0,000 0,002 0,0%
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Stickel (1990) we find that earnings forecasts can be predicted, and as such we substantiate

these earlier findings.

The estimation results for the statistical models so far are informative in their own right,

but for our present study they mainly serve to each time disentangle a predictable component

from an unpredictable component. This last component will become the focus of our interest

in the rest of this chapter.

5.5 How useful are the predictable and unpredictable com-

ponents?

Now we have seen that earnings forecasts can be predicted to quite some extent, we will now

analyse to what extent earnings forecasters add some value to the statistical model that can

be constructed using publicly available data. We adopt three focus points. The first concerns

all forecasts, then we see if we can evaluate individual forecasters against each other, and

finally we consider the forecasts from the same forecaster and compare these with his or her

own other forecasts.

5.5.1 All forecasts

We start with an examination of the predictive accuracy and compare the performance of the

forecasts of the earnings forecasters (which are of course equal to the sum of the predictable

and unpredictable components) with the statistical model forecasts (which are just the pre-

dictable components). Next, we zoom in on the size of the unpredictable components and

examine if larger deviations from the statistical model forecasts are better or not. Finally, we

look at whether we can use the unpredictable component in an alternative and perhaps better

way by using different weights.

Do earnings forecasts improve on statistical model forecasts?

Table 5.7 shows some statistics on a newly created variable that seeks to highlight the dif-

ferences across the two sets of forecasts. This variable is the median value (across 316

firms) of the ratio of squared earnings forecast errors over squared model forecast errors.

The difference between these two sets of forecasts is the unpredictable component, so if this
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Table 5.7 A summary of results on median EFE2

PCE2 , the median ratio of squared earnings forecast error
over squared predictable component error. The predictable component error is the error made if we use the part
of the earnings forecast that we can predict using a statistical model. This ratio shows whether the inclusion of
the unpredictable component results in an improvement or not. The last two rows show the average and median
for the percentage of the forecasts for which the ratio is smaller than 1. We show results for 18338 forecasters
across 316 firms, separated for the estimation (146319 forecasts) and evaluation (126651 forecasts) samples.

Period Estimation sample Evaluation sample
Average 0,609 0,638
Median 0,655 0,631
Standard Deviation 0,304 0,571
5% percentile 0,071 0,061
95% percentile 1,031 1,207
Percentage < 1, average 65,1% 66,4%
Percentage < 1, median 63,7% 64,4%

performance ratio is different from 1 in either direction then that must be due to this unpre-

dictable component. The table presents this median ratio for both the estimation sample and

the evaluation sample. In the evaluation sample we use the model parameters as they have

been estimated using the estimation sample.

The bottom panel of Table 5.7 shows that the performance ratio is below 1 in about 65%

of the cases. Hence, for 65% of the 316 firms, the earnings forecasts created by the earnings

forecasters provide more accuracy than the predictable component from the statistical model.

The results across the estimation sample and the evaluation sample are similar. Note that this

thus means that for 35% of the firms one could easily rely on the statistical model forecasts.

Table 5.8 concerns the outcomes for the same ratio, but now for different parts of the year.

These parts correspond with the four periods between the quarterly announcements and the

three periods around the quarterly announcements (except for the quarterly announcement

that coincides with the yearly announcement). The results in this table show that the perfor-

mance ratio increases throughout the year, meaning that the unpredictable component leads

to more accuracy in the beginning than towards the end. This might be due to an increase

in the accuracy of the statistical model simply because the predictable components are then

based on more observations and thus the sample period which may require added expertise

from the earnings forecaster becomes smaller. All in all, we can conclude that the earnings

forecasters can substantially contribute to the quality of the final forecasts, which is most

obvious from the two bottom rows in Table 5.8.
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Table 5.8 A summary of results on
median EFE2

PCE2 , the median ratio of squared earnings forecast error over squared predictable component error.
The predictable component error is the error made if we use the part of the earnings forecast that we can predict
using a statistical model. This ratio shows whether the inclusion of the unpredictable component results in an
improvement or not. The last two rows show the average and median for the percentage of the forecasts for
which the ratio is smaller than 1. We show results for 18338 forecasters across 316 firms, for a total number of
272970 observations spread over seven periods in the year leading up to the earnings announcement. The seven
periods roughly correspond to the periods around the quarterly earnings announcement (excluding the fourth
quarter, which coincides with the announcement of the earnings of interest) and the four periods in-between.
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Average 0,455 0,414 0,632 0,613 0,797 0,789 0,921
Median 0,335 0,350 0,640 0,625 0,808 0,750 0,887
Standard Deviation 0,464 0,329 0,351 0,379 0,411 0,683 0,552
5% percentile 0,020 0,025 0,077 0,088 0,166 0,180 0,266
95% percentile 1,170 1,032 1,136 1,209 1,463 1,378 1,581
Percentage < 1, average 69,7% 72,3% 64,4% 66,6% 60,2% 62,1% 58,1%
Percentage < 1, median 69,0% 71,8% 62,8% 66,2% 60,0% 62,1% 57,1%

Is there an optimal size of the unpredictable component?

As the unpredictable component does seem to help for improved forecast accuracy we now

want to know what kind of added value of an earnings forecaster makes the difference. For

this, we regress the squared earnings forecast error on a constant, on the unpredictable com-

ponent and on the squared unpredictable component. We do this three times, once using the

raw data and twice using two standardization approaches. Standardization might be relevant

as it may occur that earnings are difficult to forecast as the data may be unstable, and this

could then have an effect on both the squared earnings forecast error and the unpredictable

components. The first standardization employs the variance of the predictable component

for a firm, whereas the second considers the variance of the unpredictable component. The

results are presented in Table 5.9.

The left-hand columns of Table 5.9 show the unstandardized results, while the other

columns concern the standardized results. In all cases, even across the estimation and eval-

uation samples, the result for the squared unpredictable component is the same. That is, the

larger is the squared unpredictable component, the larger is the squared forecast error of the
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Table 5.9 Regression of squared forecast
error of the earnings forecasts on the unpredictable component and its square: FE2 = β0 + β1UC + β2UC

2.
We do this for all 316 firms and 18338 forecasters simultaneously in two regressions, one for the estimation
sample (n=146319) and one for the evaluation sample (n=126651). Next to OLS estimation of the above
linear model, we also use two standardization methods to account for firm differences in the size of earnings
and the uncertainty of earnings. Standardization 1 uses the variance of the predictable component per firm.
Standardization 2 uses the variance of the unpredictable component per firm. Standard errors in parentheses.

No standardization Standardization 1 Standardization 2
intercept 0,116 (0,003) 0,079 (0,002) 2,427 (0,034)
UC 0,539 (0,020) 0,257 (0,012) 0,151 (0,044)
UC2 0,891 (0,011) 0,940 (0,008) 0,934 (0,012)
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R2 0,044 0,085 0,040
intercept 0,777 (0,024) 0,163 (0,004) 5,955 (0,061)
UC 0,292 (0,054) 0,250 (0,015) -1,182 (0,042)
UC2 0,980 (0,002) 1,006 (0,001) 0,879 (0,007)
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R2 0,625 0,810 0,107

earnings forecast. So, in general, earnings forecasts that are close to what a statistical model

would predict are most accurate.

The story for whether an earnings forecast is better off by being higher or lower than

the predictable component is not so clear, as can be seen from the right-hand side columns

of Table 5.9. Using no standardization or the first standardization suggests that negative

unpredictable components perform better (see the positive parameters on UC). However,

the second type of standardization gives no relationship (in the estimation sample) or the

opposite relationship (in the evaluation sample). In all cases, however, the parameter for

UC2 stays close to 1. So, we do not find evidence that systematically adjusting upwards or

downwards leads to more accuracy.

How useful is the unpredictable component?

Table 5.10 presents our OLS-based estimation results of the regression of the actual (the

true earnings observations) on various functions of the predictable and unpredictable com-

ponents. We include interaction terms with the number of forecasts, as the predictable com-

ponent might be more accurate when it is based on more forecasts. We also include interac-

tion terms with the time until the announcement, as forecasts just before the announcement

might have already incorporated all information into the predictable component, and as such

leaving not much room for extra expertise of the earnings forecaster.



Table 5.10 A summary of results of the regression of the actual
earnings on predictable and unpredictable component variables: Actual = α+ βPCV + γUCV . PCV does
not include only the predictable component itself, but also interaction terms of the predictable component with
logNF, the logarithm of the number of forecasts on which Average Forecast is based at that moment, and with
logTUA, the logarithm of the number of days until the announcement. In a similar way UCV is based on the
unpredictable component and interaction terms of the unpredictable component with logNF and logTUA. We
run these regressions for each firm separately (of the 316 firms) but pool the results of all 18338 forecasters.
The total number of observations in the regressions across all firms is 146319 in the estimation sample and
126651 in the evaluation sample. We present several statistics (average, median, standard deviation, 90%
interval) on the estimated parameters and also the average and median of the standard error of the parameters.

Estimated coefficient Standard error
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intercept 0,067 0,021 0,348 -0,243 0,509 0,034 0,020
PC 1,060 1,099 3,815 -3,274 4,489 0,663 0,444
PC x logNF -0,018 -0,019 1,176 -0,980 1,240 0,233 0,152
PC x logTUA -0,020 -0,016 0,704 -0,582 0,834 0,122 0,081
PC x logNF x logTUA 0,004 0,004 0,215 -0,249 0,182 0,043 0,027
UC 2,400 1,506 24,167 -34,384 40,469 11,212 10,087
UC x logNF -0,663 -0,456 8,279 -13,757 12,491 4,005 3,460
UC x logTUA -0,198 0,028 4,458 -7,161 6,155 2,068 1,836
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UC x logNF x logTUA 0,082 0,029 1,543 -2,411 2,530 0,744 0,646
intercept 0,394 0,278 0,972 -0,498 1,704 0,067 0,046
PC 0,054 0,711 5,900 -8,086 5,740 0,950 0,506
PC x logNF 0,242 0,068 1,888 -1,590 2,451 0,326 0,174
PC x logTUA 0,084 0,027 0,988 -0,959 1,272 0,172 0,095
PC x logNF x logTUA -0,024 -0,006 0,321 -0,367 0,343 0,059 0,033
UC -2,370 -2,213 43,991 -52,879 50,791 13,371 9,822
UC x logNF 0,712 0,793 14,559 -18,921 16,258 4,661 3,402
UC x logTUA 0,811 0,655 7,789 -9,058 9,518 2,435 1,832
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UC x logNF x logTUA -0,224 -0,229 2,584 -3,003 3,002 0,853 0,631
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Several results in this table are interesting. The estimated parameters for the predictable

and unpredictable components in the estimation sample seem to suggest that they need to be

made more important than what they are in the actual forecast. In the latter their weights are

equal to 1 by construction, but the table suggests that alternative weights could be benefi-

cial. Note that these larger weights are downplayed by the interaction terms with the number

of forecasts and the time until announcement, which are two variables that are both strictly

positive and have an associated negative parameter estimate. To visualize this findings, con-

sider Figure 5.1 which shows the effective parameters for both components throughout the

year, both in the estimation and in the evaluation sample. This figure demonstrates that the

optimal weight for each of the components is always below 1. For the predictable compo-

nent, the contribution is relatively stable throughout the year, whereas for the unpredictable

component the contribution is highest at the beginning of the year.

Another result from Table 5.10 is that the predictable component parameters are all es-

timated more accurately than their unpredictable component counterparts. Also, and not

unexpectedly, the estimation results are more reliable in the estimation sample than in the

evaluation sample.

These results altogether suggest that the optimal contribution of the unpredictable com-

ponent can be less than 1. Hence, in other words, perhaps the earnings forecasters are adding

too much of their unobservable expertise on top of what a statistical model already could

achieve. This is not to say that the contribution of this expertise should be set at 0, as the

results in Table 5.11 clearly indicate that this unpredictable component matters. This table

presents the results on the F-test for the joint statistical relevance of the four variables that

are associated with the unpredictable component. In both samples, the median F-statistic

is larger than 20, and the 5% based F-test rejects no significant effect in more than 90% of

the cases. Hence, there are clear signs that the unpredictable component does add useful

information.

The next step is to examine how much the unpredictable component actually contributes

to forecast accuracy. Table 5.11 also shows theR2 values when using the predictable compo-

nent variables and also when additionally including the unpredictable component variables.

The increase in the median R2 is about 2 to 3 percent, which is not that much. On the other

hand, the median R2 using only the predictable variables is already around 90% so there is

not much left to be explained.



Figure 5.1
The effective parameter of the predictable and unpredictable component in forecasting the actual earnings
throughout the year (with earnings announcement at t=0), after filling in average actual values for the number
of forecasts and time until announcement across all firms and all years in the estimation or evaluation sample.
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Table 5.11 A summary of results on the comparison between the regressions
of (1) Actual = α + βPCV , the actual earnings on only predictable component variables and (2) Actual =
α+ βPCV + γUCV , the actual earnings on both the predictable and unpredictable component variables. We
run these regressions for each firm separately (of the 316 firms) but pool the results of all 18338 forecasters. The
total number of observations in the regressions across all firms is 146319 in the estimation sample and 126651
in the evaluation sample. The F-statistic is based on the test for the joint significance of γ, the parameters
of the unpredictable component variables, and the results for the associated p-value are shown in the column
labelled p-value. Also shown are results for the R2 values for both the restricted and the unrestricted model.
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Average 33,776 0,015 0,868 0,893 29,292 0,039 0,817 0,850
Median 21,554 0,000 0,918 0,935 20,794 0,000 0,878 0,901
Standard Deviation 44,568 0,103 0,155 0,129 30,484 0,164 0,180 0,155
5% percentile 3,066 0,000 0,554 0,610 1,442 0,000 0,422 0,508
95% percentile 101,095 0,032 0,997 0,997 85,891 0,233 0,988 0,993
Significant at 5% level 96,2% 91,8%

To complete our story on weights of the two components that could constitute an accurate

forecast, we look at the comparison of the accuracy of optimally weighted forecasts to its

constituent earnings forecasts and statistical model forecasts, and we report the results in

Table 5.12.

From this table we see that the ratios that include the errors of the optimal forecast (OFE)

are smaller than 1 for the samples for which the optimality is based on the parameters in the

estimation sample for the estimation sample data or on the parameters found in the evaluation

sample for the evaluation sample data. In contrast, when we use the estimation sample

parameters for the evaluation sample data, the relevant ratio is larger than 1 compared to

both the model forecast and the earnings forecast. This suggests that the optimal weights do

not yield a stable performance over time and that they apparently need to be re-estimated on

a regular basis.

5.5.2 Comparison across forecasters

The final part of our empirical analysis concerns an examination into which properties of

individual earnings forecasters make them to display superior forecast performance. We first
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Table 5.12 A summary of results on the median ratios between two squared
errors. We use combinations of the following: FE2, the squared earnings forecast error, PCE2, the squared
error of using the predictable component as forecast, and OE2, the squared error of the optimal combination of
the predictable component and unpredictable component variables. We calculate these median ratios for each
firm separately (of the 316 firms) but pool the ratios of all 18338 forecasters. The total number of observa-
tions across all firms is 146319 in the estimation sample and 126651 in the evaluation sample. We calculate
some ratios in the evaluation sample twice: once with the weights (used in the construction of the optimal
forecast) as estimated in the estimation sample, and once using weights based on the evaluation sample itself.

Estimation sample
with estimation
sample weights

Evaluation sample
with estimation
sample weights

Evaluation sample
with evaluation
sample weights

EFE2

PCE2
OFE2

PCE2
OFE2

EFE2
EFE2

PCE2
OFE2

PCE2
OFE2

EFE2
OFE2

PCE2
OFE2

EFE2

Average 0,609 0,669 1,499 0,638 2,878 7,463 0,570 1,123
Median 0,655 0,532 0,877 0,631 1,107 2,165 0,311 0,591
Standard Deviation 0,304 1,206 4,425 0,571 5,703 18,399 3,097 5,330
5% percentile 0,071 0,059 0,279 0,061 0,142 0,642 0,031 0,164
95% percentile 1,031 1,371 3,437 1,207 10,102 33,621 0,943 1,757

look at the key aspects that make earnings forecasters outperform a statistical model, and

next we zoom in on optimal properties of the added expertise of the forecaster.

How to find outperforming earnings forecasters?

To investigate which earnings forecasters do best, we introduce a new measure, which is the

balanced relative difference defined by BRD(E,P ) = EFE2−PCE2

EFE2+PCE2 , where EFE refers to

the forecast error of the earnings forecaster and PCE refers to the forecast error of the pre-

dictable component. The variable to be explained concerns the data in the evaluation sample.

Table 5.13 presents the results of a regression of the balanced relative difference between the

earnings forecasts and the predictable component thereof (in the evaluation sample) on an

intercept, the ratio of the squared unpredictable component to the squared predictable com-

ponent and three balanced relative differences. These latter three variables are the BRD(E,P)

itself and the BRD(U, P ) = UC2−PCE2

UC2+PCE2 and the BRD(O,P ) = OFE2−PCE2

OFE2+PCE2 , where UC

denotes the unpredictable component and OFE refers to the optimal forecast. Three vari-

ables show significant results. First, the BRD(E,P) in the evaluation sample is significantly

related to its previous value in the estimation sample. So, the past track record seems to have

predictive value for the future track record. Next to this, the previous value of the relative

size of the unpredictable component to the predictable component and to the previous value

of BRD(E,P) also contain predictive information.
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Table 5.13 The results for the regressions to predict better
analysts in the evaluation sample using variables in the estimation sample. This is based on 1835 forecasters
(since we only include forecasters with a minimum of 10 observations in both sample periods) with a total of
52236 forecasts in the estimation sample and 36403 forecasts in the evaluation sample. We put the data across
all firms in one regression. We use two interpretations for what a better earnings forecaster is: a forecaster who
has a smaller forecast error compared to the predicted component (”better performing”) and a forecaster whose
associated optimally constructed forecasts have smaller forecast errors compared to the predicted component
error (”having more information”). These might overlap if the forecasters with more information also use them
well (so if the optimal forecast is similar to the earnings forecast), but there could also be forecasters that do
not use their information well, which is why we separate these measures. In these regressions we use the bal-
anced relative difference: BRD(x, y) = x−y

x+y with x and y being combinations of E (for the earnings forecast
error, EFE2), P (for the predictable component error, PCE2), O (for the optimal forecast error, OFE2) and
U (for the squared unpredictable component, UC2). As performance variable, we use BRD(E,P ), while
we use BRD(O,P ) as information variable. The variables to be explained are measured in the evaluation
sample, while the regressors are measured in the estimation sample. Standard errors are shown in parentheses.

Variable to explain
BRD(E,P ) BRD(O,P )

intercept -0,174 (0,020) -0,003 (0,022)
UC2

PC2 1,152 (0,398) 0,244 (0,440)
BRD(U,P) -0,098 (0,029) -0,148 (0,032)
BRD(E,P) 0,407 (0,035) 0,302 (0,038)
BRD(O,P) 0,042 (0,026) 0,266 (0,029)

These results suggest that the forecasters who will predict best in the evaluation sample

are those that have predicted best in the estimation sample (autoregressive), who have a

small unpredictable component relative to the predictable component and who have a small

unpredictable component relative to the error of the predictable component. Of these three,

the autoregressive type variable has the highest statistical significance.

We can now use the above regressions to produce forecasts for the median balanced

relative difference of each forecaster. Next, we can then compare the actual errors of the

50% forecasters that who we predict to have the best performance to the 50% forecasters

who we predict to perform the worst. The ratio of the median squared error of the best 50%

to the median squared error of the worst 50% turns out to be 0.600. Also, the predicted

probabilities of having a negative balanced relative difference, which are the probabilities of

outperforming the statistical model, are on average 80.8% and 61.9% for the best and worst

half, respectively. This indicates that it is indeed possible to select a subset of all forecasters

who will perform better in future.
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Which forecasters have most expertise?

We use a similar approach to investigate whether it is possible to select forecasters who have

more useful information in their unpredictable component, where we define this situation as

where the optimal forecast performs best. We again use balanced relative differences. The

variable to be explained now is BRD(O,P) in the evaluation sample. The results are presented

in Table 5.13 in the right-hand side panel.

Again, the autoregressive type variable is statistically most significant, whereas the other

two significant regressors are the other two balanced relative differences, that is, BRD(U,P)

and BRD(E,P). Hence, the forecasters with the most useful information (meaning low values

of BRD(O,P)) in the evaluation sample are those with the most useful information in the

estimation sample, who are most accurate in the estimation sample and, surprisingly, who

have a large unpredictable component.

When we compare the actual optimal forecast errors of two groups that are predicted

to have the most and the least information, we get that the relative median squared optimal

forecast error is 0.566. Hence, it is indeed possible to select a subset of the forecasters that

contains those who have more informative unpredictable components.

Do the best performing forecasters have most expertise?

One may now wonder if there is an overlap between the best-performing forecasters and

those who have most (unobservable) expertise. To investigate this, we calculate the hit rate,

which is the percentage of cases in which a forecaster is categorized in the same cluster

for both measures. It so turns out that this hit rate is 85.4%, which to us indicates that the

question in the title can be answered affirmatively.

5.5.3 Comparison within forecasters

In this last subsection, we take a look at individual forecasts and compare their properties

to other forecasts by the same earnings forecaster. Indeed, a large unpredictable component

might be much more surprising if produced by a forecaster who usually has small unpre-

dictable components than if produced by someone else who usually has large unpredictable

components. In the first case, this single forecast may be based on unique and important

information, but it might also mean that the forecaster quoted at random.
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Table 5.14 A summary of results on the correlation between three
balanced relative difference variables and two unpredictable component variables, calculated per individual
forecaster. This is based on 4541 forecasters, with 90190 forecasts in the estimation sample and 28000 in the
evaluation sample. We calculate the correlation of theUC variables with three balanced relative difference vari-
ables, with the definition BRD(x, y) = x−y

x+y with x and y being combinations of E (for the earnings forecast
error, EFE2), P (for the predictable component error, PCE2) and O (for the optimal forecast error, OFE2).
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Average -0,096 -0,185 -0,116 -0,069 -0,166 -0,121
Median -0,125 -0,214 -0,133 -0,124 -0,210 -0,146
Standard Deviation 0,322 0,279 0,273 0,335 0,278 0,272
5% percentile -0,582 -0,598 -0,535 -0,559 -0,556 -0,526
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95% percentile 0,454 0,324 0,359 0,506 0,354 0,358
Average -0,146 -0,122 0,033 -0,125 -0,105 0,030
Median -0,173 -0,129 0,049 -0,177 -0,116 0,046
Standard Deviation 0,477 0,490 0,472 0,481 0,487 0,468
5% percentile -0,953 -0,967 -0,877 -0,954 -0,963 -0,863
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95% percentile 0,790 0,852 0,909 0,816 0,835 0,892

We compute for each forecaster the correlation between the size of the unpredictable

component and the three balanced relative difference variables, which are BRD(E,P),

BRD(O,P) and BRD(O,E), of which the latter is defined as BRD(O,E) = OFE2−EFE2

OFE2+EFE2 .

This last measure can be interpreted as how much the earnings forecaster could improve his

forecast if he would optimally use his available information. As measures for the size of the

unpredictable component we use both |UC| and UC2. A summary of the results across all

forecasters is presented in Table 5.14.

Table 5.14 shows that only negative correlations are found. The negative correlations be-

tween the size variables of UC and BRD(E,P) indicate that large unpredictable components

for a particular forecaster are associated with a better performance compared to the statistical

model. Similarly, the negative correlations with BRD(O,M) show that large unpredictable

components are associated with more information in that unpredictable component. Finally,

the negative correlations with BRD(O,E) show that large unpredictable components are as-

sociated with a better optimal forecast than the actual earnings forecasts, and thus with less

optimal use of the unpredictable component by the earnings forecaster.
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Table 5.14 also covers the evaluation sample. In this case, not all correlations are nega-

tive. The correlations with BRD(E,P) and BRD(O,P) result in the same qualitative conclu-

sion as before, that is, large unpredictable components are associated with a better perfor-

mance and more information than smaller unpredictable components produced by the same

forecaster. The positive correlation of BRD(O,E) with the size of the unpredictable compo-

nent indicates that in this case, on average, large unpredictable components coincide with

less opportunity to set optimal weights in the combination of the unpredictable component

with the model forecast. This finding may be due to unstable weights over time.

Overall, we find that in general small-sized added expertise of an earnings forecaster to a

statistical model forecast is beneficial. At the same time, when an individual forecaster with

a track record of small-sized added expertise suddenly makes large adjustments, then this

usually leads to an increased accuracy of the earnings forecasts.

5.6 Conclusion

Earnings forecasts are an important factor in the decision making process of investors. In

this chapter we have shown that earnings forecasts can be predicted, which allows investors

to already incorporate the predictable part in their investment decision. Furthermore, we

also show that the unpredictable part of an earnings forecast can be used. One way to use

it, is to improve the forecast based on just the predictable part. This is especially beneficial

in the beginning of the year. Another use of the predictable and unpredictable components

concerns the selection of earnings forecasters, which can be relevant if an investor wants

to ignore the forecasters with a poor track record. We have shown that there is persistence

in the performance of forecasters compared to the predictable component, that is, earnings

forecasters who perform better in our estimation sample, also perform better, on average, in

the evaluation sample. Similarly, the information in the unpredictable component, that can

be used to improve the optimal forecast, is also persistent, that is, earnings forecasters whose

unpredictable components are more useful in the estimation sample also have this property

in the evaluation sample.

In general, large unpredictable components seem to be a bad sign, as they are associated

with large relative forecast errors. This is not the case if the earnings forecaster normally
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produces small unpredictable components. In that case, a large unpredictable component is a

sign of both good performance and more useful information in this unpredictable component.



86 How informative are the unpredictable components of earnings forecasts?

5.A Small-sample error correction method

In Section 5.4 we use a model to predict earnings forecasts, including a correction to account

for small-sample error. In this appendix, we present the mathematical definition of the model.

We will describe the regression by using the familiar notation

yi,j,t = Xi,j,tβj + εi,j,t, (5.1)

with subscript i denoting the individual forecaster, j the firm for which the earnings are

forecasted and t the day on which the forecast is produced. The parameter coefficients are

denoted by βj , which is a vector consisting of βj,k for k = 1, .., K, one parameter for each

variable in Xi,j,t. We will let the vector of coefficients differ per firm, but not per individual

nor for different time periods. Also, the error variance σ2
ε,j differs per firm. This is the model

without the small-sample error correction.

Now we introduce the small-sample error correction, for which we use a latent variable

model for βj . We can use this latent variable model to correct estimates that have been esti-

mated with a small number of data points and which are thus less accurate and more prone to

outliers. These estimates can be adjusted towards the overall mean of that respective param-

eter, and we do that in such a way that estimates based on more than thousand observations

are hardly affected. As a necessary assumption for this model we use

βj ∼ N(β∗,Σβ) (5.2)

which means that the latent parameter vector βj (the estimated parameters for firm j) is re-

lated to the overall mean parameter vector β∗. For simplicity, we will assume the covariance

matrix Σβ to be diagonal. Then we employ the following steps:

1. The elements of β∗ and Σβ are estimated by taking the weighted average and weighted

variance of all individual estimates.



5.A Small-sample error correction method 87

2. We update each individual estimate by taking a weighted average:

β
(u)
j,k = wj,kβ

∗
k + (1− wj,k)βj,k (5.3)

wj,k =

1
σβ,k

1
σβ,k

+ nk
σε,j

(5.4)

The weights are calculated using the inverses of the latent variable standard deviation

and the standard error of the regression, as these determine how accurate both sources

of information on the βj,k estimate are.

We will repeat (5.3) and (5.4) until convergence.





Chapter 6

Stochastic levels and duration

dependence in US unemployment

Based on de Bruijn and Franses (2015). Authors contributed according to a 95% / 5% split.

Abstract

We introduce a new time series model that can capture the properties of data as is typically

exemplified by monthly US unemployment data. These data show the familiar nonlinear

features, with steeper increases in unemployment during economic downswings than the

decreases during economic prosperity. At the same time, the levels of unemployment in

each of the two states do not seem fixed, nor are the transition periods abrupt. Finally, our

model should generate out-of-sample forecasts that mimic the in-sample properties. We

demonstrate that our new and flexible model covers all those features, and our illustration to

monthly US unemployment data shows its merits, both in and out of sample.
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Figure 6.1 Monthly unemployment in the United States in the period 1948 to 2012.

6.1 Introduction

In this chapter we introduce a new time series model that can capture the properties of data as

exemplified by monthly US unemployment data as depicted in Figure 6.1. Clearly the data

show nonlinear features, as the increases in unemployment during economic downswings

are much steeper than the decreases during economic prosperity. At the same time, the

levels of unemployment in each of the two states do not seem fixed, nor are the transition

periods abrupt. Finally, one would want a time series model that can generate out-of-sample

forecasts that mimic the in-sample properties. Our new and flexible model will be shown to

cover just those aspects, and our illustration to the very same US unemployment data shows

its merits.

To analyze time series data with regime switching features, a natural starting point is the

familiar Markov Switching model. Markov Switching (MS) models (Hamilton, 1989) are

suitable for data fluctuating around two levels, where these levels associate with each of the

two states. In the initially proposed MS models, the occurrence of a state at time t is only

dependent on the state at time t − 1 and it is governed by transition probabilities pij , the

probability of switching from state i to state j. In these initial models, the probabilities are

fixed across the sample. Figure 6.2a shows a simulated example of a MS model with 2 states.

Recent applications of such basic MS models include Kim (2009), Bauwens et al. (2010),
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Figure 6.2 Four stylized series to characterize the gradual steps from a standard MS model to our model.

Nalewaik (2011), Cunningham and Kolet (2011), Guérin and Marcellino (2013) and Chen

and Schorfheide (2013).

One of the features of such a basic MS model is that it is not capable of dealing with

cyclicality, which entails for example that the forecasts produced by a basic two-state MS

model are monotonically convergent. One modification to account for cyclical behavior is

to introduce duration dependence in the transition probabilities (Diebold and Rudebusch,

1990; Durland and McCurdy, 1994). For example, one could let the probabilities be pij =

F (β0 + β1dt) with F any CDF and dt the duration of the current spell at time t, which

is the period since the last state switch. This means that the probability of switching now

has become dependent on the duration of the spell. Figure 6.2b shows an example of a

duration dependent MS model with 2 states, in which the duration dependence is positive,

that is, the probability of switching out of a state increases the longer the time series has

been within that state. Such MS models are implemented in, among others, Sichel (1991),

Lunde and Timmermann (2004), Lam (2004), Layton and Smith (2007), Castro (2010) and

Cunningham and Kolet (2011).
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A common feature of the two MS models so far is that the mean in each of the states is

fixed. For example, if one were to use a two-state MS model to model unemployment from

1980 to now, one assumes that the states of high unemployment and low unemployment

imply the same mean for both the eighties and the current decade. This assumption might

not be considered as realistic, which is also clear from Figure 6.1. Hence, one may wish to

allow the means to be stochastic. In our model we alleviate the restriction by allowing the

means to alternate in such a way that the difference is different each time. An example of the

kind of data that can be generated by such a model can be found in Figure 6.2c.

Finally, as already indicated, and is visible from Figure 6.1, the transitions from one state

to the other may not be immediate, as there might be a gradual transition from the previous

state mean to the new state mean. At the same time, the time it takes to switch from one

regime to the other may also not be the same across the entire sample, and hence we wish

to allow the transition process to be a stochastic process too. Figure 6.2d shows a simulated

time series with these properties, and it is clear that the pattern starts to come close to the

unemployment data graphed in Figure 6.1.

To wrap up, in the present chapter we propose a Markov Switching model with duration

dependence, and with stochastic processes for the levels in each of the states and for the

transitions from one regime to the other. We will illustrate our new model for monthly US

unemployment from 1948 to 2012 (see Figure 6.1). As this new model is computationally

demanding and also requires the data to be informative, we run various simulations to see

how well parameters can be estimated.

The outline of the remainder of this chapter is as follows. In Section 6.2 we will for-

mally introduce our new MS model. Using simulations, we will highlight some of the data

characteristics that align with this model. Section 6.3 discusses estimation of the parame-

ters and inference of the latent variables. We will also show how one can produce forecasts

using this model, and we will demonstrate that these forecasts continue the in-sample data

features into the future. In Section 6.4 we illustrate our model and the associated estimation

procedure for US unemployment. We also outline how our new model can be used for real-

time monitoring of the data. In Section 6.5 we simulate from the DGP using the estimates

from Section 6.4 to investigate how accurate the parameters can be estimated. Finally, we

conclude in Section 6.6 with some final remarks and thoughts for further research.
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6.2 Modeling and simulations

We first reintroduce the Markov Switching model. We choose for a notation that will make it

easier to describe extensions. Denote the time series of interest as yt with t = 1, . . . , T . We

relate yt to the two state means µ0 and µ1, and the differences between the data and the state

means are contained in the error term εt ∼ N(0, σ2
ε). In the basic MS model the probability

of being in one of the states st ∈ 0, 1 depends only on the state in the previous time period,

and in the basic MS model these probabilities are assumed as fixed. The so far discussed

properties of the model can be captured by the following expressions:

yt = µt + εt, εt ∼ N(0, σ2
ε) (6.1)

µt = µst (6.2)

P (st = j|st−1 = i) = pij, i, j ∈ 0, 1 (6.3)

The time period of the κth switch is described by the variable τκ, so sτκ 6= sτκ−1 ∀κ and

st = st−1 for all other t.

A first extension of this model that is often considered in practice concerns allowing

for transition probabilities that are duration dependent. One way to do this is to use a link

function to transform a linear function of the state duration to a variable between 0 and 1.

One possible link function that is commonly used in various applications is the standard

normal CDF Φ(.). If the duration of the relevant state at time t is captured by the variable dt,

then a first extension amounts to replacing (6.3) by P (st = j|st−1 = i) = Φ(β0 +β1dt). This

makes the transition probability dependent on the duration dt, but note that it also assumes

that switches from one state to the other occur in a similar way. One way to incorporate a

possible difference in such switching behavior is to consider

P (st = j|st−1 = i) = Φ(β0 + β1I[st−1 = 1] + β2dt + β3dtI[st−1 = 1])

= Φ(β′Dt)
(6.4)

with I[.] the indicator function and D′t = [1 I[st−1 = 1] dt dtI[st−1 = 1]]. If both β1

and β3 are zero, then there is no difference in the switching behavior across the two states. If

both β2 and β3 are zero, there is no duration dependence, and the model reduces to the basic

MS model as in equations (6.1)-(6.3).
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In practice we need to estimate the value of dt when t = 1 as we do not know whether

a switch has occurred just before the start of the sample or whether it has occurred a long

time before that. For this, we introduce the variable d∗1, and we will set d1 equal to that, and

calculate the other dt’s by either adding 1 to the previous value, or by resetting it to 1.

Next, we propose a second extension by allowing for stochastic state means, instead

of fixing these to two values µ0 and µ1. To allow for this in the notation, we introduce

the difference between the type of state st, which is either H (high) or L (low), and the

sequential number of the state at time t, for which we extend the variable κ to have an index

κt = 0, 1, . . .. The state type will switch around each time the data enter a new state. We

assume the following relation between two subsequent states means, that is

µκt ∼ N(µκt−1 + ∆µ∗ × (−1)I[st=L], σ2
∆µ) (6.5)

This relation assumes that the new state mean on average differs ∆µ∗ from the previous state

mean. This difference is however not fixed, so it is not exactly the same each time. Also,

whether the change in the state mean is upwards or downwards depends on what type of state

st will be associated with the new state mean µκt . We do not want new state means to be on

the wrong side of the previous state mean (for example, having a state mean of type st = H

being lower than the directly preceding state mean of the low type). Therefore, we adjust

the preceding relation to a Truncated Normal distribution with parameters for the bounds

denoted by lbκt and ubκt as

µκt ∼ TN(µκt−1 + ∆µ∗ × (−1)I[st=L], σ2
∆µ, lbκt , ubκt) (6.6)

lbκt =

 −∞ if st = L

µκt−1 if st = H
ubκt =

 µκt−1 if st = L

∞ if st = H
(6.7)

The observation mean µt can now be generalized from (6.2) to

µt = µκt (6.8)

Our third and final extension concerns the stochastic linear transitions. We introduce the

notation λκt to denote the time taken by the transition of state mean µκt−1 to µκt . The linear

transition property indicates that between the start of the transition τκt and the end of the
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transition at τκt + λκt , the state mean is not equal to either µκt−1 or µκt , but a weighted sum

of these, with weights dependent on the length of the transition period. To calculate weights,

we can use the duration variable dt. This results in partly replacing (6.8) by

µt =
dt
λκt

µκt + (1− dt
λκt

)µκt−1 (6.9)

We write ”partly” because this replacement is only relevant for the cases in which t ∈

[τκt ; τκt + λκt ]. For the other cases, (6.8) remains valid, that is, µt = µκt if t ∈

[τκt +λκt ; τκt+1]. We impose a distribution on λκt that needs to be positive, which is why we

use the lognormal distribution. We allow the precise distribution to be dependent on whether

the switch is upwards or downwards, as there might be a difference in transition speed. For

the upwards switch, we propose λuκt ∼ LN(λ∗u, σ
2
λ,u). Similarly for the downwards switch,

we assume λdκt ∼ LN(λ∗d, σ
2
λ,d). Finally, we impose that the transition periods have come to

an end before the next one starts. The latter amounts to the restriction

τκt+1 − τκt ≥ λκt (6.10)

for all κt.

To wrap up, our new model reads as

yt = µt + εt, εt ∼ N(0, σ2
ε) (6.11)

µt =

 µst if t ∈ [τκt + λκt ; τκt+1]

dt
λκt
µκt + (1− dt

λκt
)µκt−1 if t ∈ [τκt ; τκt + λκt ]

(6.12)

P (st = j|st−1 = i) = Φ(βDt) (6.13)

D′t = [1 I[st−1 = L] dt dtI[st−1 = L]] (6.14)

µκt ∼ TN(µκt−1 + ∆µ∗ × (−1)I[st=L], σ2
∆µ, lbκt , ubκt) (6.15)

lbκt =

 −∞ if st = L

µκt−1 if st = H
ubκt =

 µκt−1 if st = L

∞ if st = H
(6.16)

λuκt ∼ LN(λ∗u, σ
2
λ,u) λdκt ∼ LN(λ∗d, σ

2
λ,d) (6.17)

τκt+1 − τκt ≥ λκt (6.18)
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Our new model includes 12 parameters that need to be estimated from the data, and these

are σε, ∆µ∗, σ∆µ, λ∗u, σλ,u, λ∗d, σλ,d, β0, β1, β2, β3, d∗1. Additionally, we need to estimate

3κT + 1 latent variables, that is µκt , τκt , λκt ∀κt, plus the start state mean µ0. The number

of latent variables depends on the size of the sample and on the frequency of state switches.

The other variables such as the observation mean µt or the state duration dt can be directly

calculated from the estimates of the latent variables.

Hypothetical data

To examine how time series data can look like if they are generated from the new model, we

run a few simulations. We generate data from four data generating processes (DGPs). The

reference DGP, for which the associated hypothetical data are plotted in the top left part of

each upcoming graph, is based on the following parameter configuration, that is, σε = 1,

µ0 = 0, ∆µ∗ = 6, σ∆µ = 2, λ∗u = λ∗d = 2.5, σλ,u = σλ,d = 0.5, β = [−4 0 0.1 0]′ and d∗1 =

0, where we set the sample size at T = 500. This corresponds with a duration-dependent

model in which the transition behavior is the same for upward and downward switches. The

other DGPs differ from the benchmark DGP each time for only a few parameters, that is, we

consider (i) σ∆µ = 1, which amounts to a process with more similar-sized jumps between

the state means, and thus this process is closer to a model without stochastic means. Next,

we consider (ii) β = [−3 − 3 0.12; 0]′, for which the most important difference is β1 = −3

instead of β1 = 0. The intercept for downward switches is β0 + β1, thus a negative value for

β1 makes downward transitions take more time to initialize than upward transitions, which

have just β0 as intercept. Finally, we consider (iii) λ∗d = 4, which means that the downward

transitions take more time to complete than the upward transitions.

Figure 6.3 shows several simulated series using each of the four configurations of the

parameters. The top-left graph shows three series generated using the reference DGP, with

two series having a different µ0 which ensures that these lines do not overlap. The state

durations are relatively stable, which illustrates the duration dependence. Also, the stochastic

means are evident from the fact that the level is not the same each time the data switch

between states. Especially the top line shows a quickly changing mean.

The other graphs in Figure 6.3 show comparable but slightly different behavior. The

top-right panel shows alternative (i), which incorporates a lower σ∆µ. This is visible as this



6.2 Modeling and simulations 97

Figure 6.3 Three sample series of each of a reference DGP and three alternatives.

series shows less drifting behavior, and stays closer to its starting value. Alternative (ii) in

the lower-left graph depicts the case in which the duration dependence is different per state.

The graph clearly shows that more time is spent in the high states than in the low states. The

lower-right graph represents alternative (iii), in which the transition time is different across

the types of switches. The series in this graph clearly have a longer upwards transition time

than downwards.

Figure 6.4 shows the first half of one of the series for each type, and then uses 10000

simulations to construct a prediction interval for the remainder of the series. The top-left

graph shows how our new general model’s short-term forecasts can capture the cyclical be-

havior rather well. Of course, for the longer term one eventually becomes less certain about

whether there will be an upward or a downward state. Also, the confidence intervals in-

crease as the aggregated effect of the unknown future information increases. The smaller

σ∆µ in alternative (i) is clearly visible in the top-right graph of Figure 6.4, as the intervals are

smaller, especially for the longer term where the aggregated effect of σ∆µ could have much

of an effect. The intervals for both alternatives (ii) and (iii) seem to be comparable in size for

all horizons relative to the reference DGP. This shows that the estimation of the stochastic

mean shall be the most important part of the estimation process as this mean dominates the

uncertainty in long-term forecasts.
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Figure 6.4 Simu-
lated confidence intervals for the second half of one series for each of a reference DGP and three alternatives.

Finally, Figure 6.5 shows a simulated histogram of the length of a full cycle (switching

up and down) for each parameter configuration, based on 50000 replications. While the first

three histograms (with symmetric switching behavior between both types of states) have an

approximately symmetrically distributed cycle length, the last histogram shows a much more

asymmetric distribution. This shows that an asymmetric switching occurrence (alternative

(ii)) and an asymmetric transition length (alternative (iii)) can have different effects on the

cycle length.
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Figure 6.5 Simulated histograms for the length of a full cycle (consisting of an upward and a downward switch).

6.3 Estimation and inference

In this section we present the estimation routine for the estimation of the parameters and

latent variables in our new general model. We also show how these estimates can be used for

forecasting purposes.

Parameter estimation

We start with assuming that the number of state switches in the sample is known and is

equal to K. To estimate the parameters we will make use of Gibbs Sampling with Data

Augmentation. This method uses conditional distributions of parameters and latent variables

given other parameters and latent variables to draw parameter values in an iterative manner.

If chosen starting values of the parameters and latent variables are reasonably close to their

posterior distribution, then after convergence the draws will be draws from the posterior

distribution of the parameters. From these, one can take for example the mean to obtain a

point estimate. We denote the draw in iteration m with the superscript (m). For example,

µ
(251)
0 denotes the value of the latent variable µ0 in iteration round 251.

The conditional distributions need to be constructed for different sets of variables. Per set,

one needs to be able to draw all parameters and latent variables within that set simultaneously
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(given the other parameters and latent values), so we need to group them accordingly. The

sets that we create are as follows: [σε, σ∆µ, σλ,u, σλ,d, d∗1], [∆µ∗, λ∗u, λ∗d, β], [λ1, λ2, ..., λK],

[µ0], [µ1], ..., [µK], [τ1], [τ2], ..., [τK]. This amounts to 2K + 4 sets. We denote the sets

using the notation B1, B2, ..., B2K+4. To denote all sets except Bi, we use the notation B−i.

To denote the sets with a lower of higher index, we use B<i and B>i.

The conditional distributions

We now present and discuss the conditional distributions of each individual set.

First we discuss the conditional distribution B(m)
1 |B

(m−1)
−1 . This set consists of all the σ

type parameters. The conditional distribution can be derived for each parameter separately,

as these parameters do not directly affect each others’ contribution to the likelihood function.

To draw σ
(m)
ε , we calculate the residuals of (6.11) and denote these residuals as ε̂(m)

t . Then

we have

σ2
ε

(m)|B(m−1)
−1 ∼ IG(

T∑
t=1

ε̂2
t , T ) (6.19)

with IG denoting the Inverted Gamma distribution. Similarly, the other σ type variables can

be drawn by rewriting their defining equations in a residual form, that is,

σ2
∆µ

(m)|B(m−1)
−1 ∼ IG(

K∑
i=1

(|µi − µi−1| −∆µ∗)2, K − 1) (6.20)

σ2
λ,u

(m)|B(m−1)
−1 ∼ IG(

∑
sκ=H

(λuκ − λ∗u)2,
K∑
κ=1

I[sκ = H]) (6.21)

σ2
λ,d

(m)|B(m−1)
−1 ∼ IG(

∑
sκ=L

(λdκ − λ∗d)2,

K∑
κ=1

I[sκ = L]) (6.22)

Finally, for the draw of d∗1 we only need to observe the moment of the first switch τ (m−1)
1 and

the duration dependence parameters β(m−1). The contribution to the likelihood of d∗1 is then

the probability of switching at t = τ1 times the probability of not switching earlier, like

L(d∗1) ∝ Φ(β(m−1)D
(m−1)
d∗1+τ1−1)

d∗1+τ1−1∏
t=1

(1− Φ(β(m−1)D
(m−1)
t )) (6.23)

We draw the new value for d∗1
(m) from 0, 1, ... using the probabilities p(j) = L(j)∑∞

i=1 L(i)
.
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Next, for the draws of B(m)
2 |B

(m)
1 , B

(m−1)
>2 , we again can split the set into parts that have

no influence on each others’ likelihood contribution. For ∆µ∗|B(m)
1 , B

(m−1)
>2 we can rewrite

(6.15) to a normal distribution with mean equal to the average difference between subsequent

state means and the variance equal to the sample mean variance, that is,

∆µ∗|B(m)
1 , B

(m−1)
>2 = N(

1

K

K∑
κ=1

|µκ − µκ−1|,
σ2

∆µ

K
) (6.24)

After applying a logarithmic transformation to (6.17), we can apply the same method to find

the conditionals of λ∗u and λ∗d:

λ∗u|B
(m)
1 , B

(m−1)
>2 = N(

1

K

∑
sκ=H

λuκ,
σ2
λ,u∑K

κ=1 I[sκ = H])
) (6.25)

λ∗d|B
(m)
1 , B

(m−1)
>2 = N(

1

K

∑
sκ=L

λdκ,
σ2
λ,d∑K

κ=1 I[sκ = L])
) (6.26)

For the simulation of β, we rewrite (6.13) by introducing the latent variable zt:

zt = βDt + ηt, ηt ∼ N(0, 1) (6.27)

st 6= st−1 if zt ≥ 0

st = st−1 if zt < 0
(6.28)

Then, we simulate zt from a truncated normal using the observation that there is a switch or

not at time t, that is,

z
(m)
t ∼

 TN(β(m−1)D
(m−1)
t , 1, 0,∞) if s(m−1)

t 6= s
(m−1)
t−1

TN(β(m−1)D
(m−1)
t , 1,−∞, 0) if s(m−1)

t = s
(m−1)
t−1

(6.29)

After that, we can simulate β(m) using a normal distribution based on the OLS regression

of z(m)
t on D(m−1)

t , like

β(m) ∼ N(β̂
(m)
OLS, (Dt

(m−1)′Dt
(m−1))−1) (6.30)

For B(m)
3 |B

(m)
<3 , B

(m−1)
>3 , we make use of a Metropolis-Hastings sampler (MH; see Chib

and Greenberg, 1995) for each individual λκ. For the MH sampler we need a candidate-

generating function and a likelihood function for evaluation. For the candidate-generating
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function, we make use of (6.17) and (6.18) to draw from g(λκ), which is a truncated log-

normal distribution with parameters λ∗u and σλ,u for an upwards transition (λ∗d and σλ,d for

downwards) and an upperbound equal to τκ+1 − τκ. For the likelihood function we use the

contribution of λκ to the likelihood, f(λκ), which is based on its effect on µt via (6.12) and

on its own likelihood via (6.17). The probability of accepting the candidate is

α = min(
f(λ∗κ)g(λ

(m−1)
κ )

f(λ
(m−1)
κ )g(λ∗κ)

, 1), (6.31)

otherwise, λ(m)
κ = λ

(m−1)
κ . As the definition g(λκ) is part of the definition f(λκ), this drops

out of the fraction and thus we can also define h(λκ) = f(λκ)
g(λκ)

, which only looks at the

contribution to the likelihood based on its effect on µt via (6.12), and then use

α = min(
h(λ∗κ)

h(λ
(m−1)
κ )

, 1) (6.32)

We use this approach for each individual λκ. The drawn value of one λκ will not affect the

distribution of the other λκ’s, which is the reason we can include them all in one set B3.

For the sets B(m)
4 |B

(m)
<4 , B

(m−1)
>4 ; . . . ; B(m)

K+4|B
(m)
<K+4, B

(m−1)
>K+4 we can use the same ap-

proach. For each Bi with i = 4, . . . , K + 4, we only draw µκ with κ = i − 4. For this,

we at first will neglect the restriction that subsequent state means must alternately be higher

and lower. We can then rewrite (6.11), (6.12) and (6.15) to a regression of yt and ∆µ∗ on

transformations of dt and λκt and on 1 and −1, that is,

yt =

 µκt + εt if t ∈ [τκt + λκt ; τκt+1]

µκt
dt
λκt

+ µκt−1(1− dt
λκt

) + εt if t ∈ (τκt ; τκt + λκt)
(6.33)

∆µ∗ =

 µκ − µκ−1 + ζκ if sκ = H

µκ−1 − µκ + ζκ if sκ = L
(6.34)

εt ∼ N(0, σ2
ε) ζκ ∼ N(0, σ2

∆µ) (6.35)

We standardize all equations by dividing each term by the associated standard deviation and

collect the variables on the right hand side (except for µκ itself) in the matrix X . We collect

the µκ variables in the vector µ. Without the alternating increase or decrease in state mean,

we could now sample all µκ using µ ∼ N(µ̂OLS, (X
′X)−1). As we do not want to interfere
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in the alternating state mean restriction, we can sample the µκ one by one, conditional on

all the others, using the standard formula for conditional normal distributions1. We restrict

these to be either higher or lower than both the newly drawn previous state mean µ(m)
κ−1 and

the next state mean of the previous iteration µ(m−1)
κ+1 .

For the sets B(m)
K+5|B

(m)
<K+5, B

(m−1)
>K+5; ... ; B(m)

2K+4|B
(m)
<2K+4, B

(m−1)
>2K+4 we can use the same

approach for each individual set. Each one of these sets consists of only one latent vari-

able, that is, τκt . For this, we again make use of a MH-sampling method, for which we

again need a likelihood-evaluating function f and a candidate generating function g. As

candidate-generating function, we consider a discrete uniform distribution between the end

of the previous transition (τ (m)
κ−1 +λ

(m)
κ−1) and the end of the current transition (τ (m−1)

κ +λ
(m)
κ ).

As we want to let τκ only influence the start of the transition and not also the end, we adjust

the transition length: λ∗κ = λ
(m−1)
κ + (τ

(m−1)
κ − τ ∗κ). For the evaluation of the likelihood,

we need to observe that τκ influences the likelihood in two ways, that is, (i) changing the

observation mean µt via (6.12), and (ii) the time periods during which the probit in (6.13)

equals 1 (and thus also when it is 0). The adjusted λκ also affects (6.12), and along with that

it contributes to the likelihood via (6.17). As our candidate-generating function is a uniform

distribution, its pdf has the same value for each input in its support and it disappears from the

equation to calculate the acceptance probability. This means that in this case the probability

of accepting the candidate τ (m)
κ = τ ∗κ equals

α = min(
f(τ ∗κ , λ

∗
κ)

f(τ
(m−1)
κ , λ

(m−1)
κ )

, 1), (6.36)

otherwise, τ (m)
κ = τ

(m−1)
κ , and similarly for λ(m)

κ .

Finally, we relax the assumption that the number of switches is known to be K. Instead,

assume that the number of state switches in the sample is an element of {K, K+1, K+2}. That

is, we allow for two states for which it is open whether they are part of the sample or not.

For this, we will allow for two additional sets of state parameters, µK+1, µK+2, λK+1, λK+2,

τK+1 and τK+2. The state means and transition speeds might be partly simulated using the

time series, if the associated switches occur before t = T . Otherwise, the simulated values

will be entirely due to the distribution assumptions (6.13)-(6.18). Similarly, the simulation of

1IfX1 andX2 are both multivariate normally distributed vectors with means µ1 and µ2, covariance matrices
Σ1 and Σ2 and cross-covariance matrix Σ12, then X1|X2 ∼ N(µ1 + Σ′12Σ−1

2 (X2−µ2),Σ1−Σ′12Σ−1
2 Σ12)
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the parameters β, ∆µ∗, σ∆µ, λ∗u, λ∗d, σλ,u and σλ,d now incorporate the additional two states

and its latent values.

In practice, we would advise to set K such that K+1 equals the suspected number of

switches in the sample. This way one can account for the situation that the expected last

switch might not have happened, or otherwise, that an unexpected switch did occur. To eval-

uate the number of switches outside this interval, one could compare the estimated average

likelihoods for different choices of K, possibly including a penalizing term for higher values

of K.

Forecasting and real-time monitoring

We can of course also construct forecasts of yt, t > T , and also for the associated latent

values. For this one can fix the parameters to the mean or median of the draws obtained

using the Gibbs sampling method. To account for parameter uncertainty, it is however better

to draw the parameters used in forecasting from the entire posterior distribution. This can be

easily done in practice by constructing a forecast in each iteration of the estimation process

using the values of the parameters in that iteration. More elaborate sampling methods need

to be used if one wants to forecast from a different starting point than at the end of the

estimation sample. In that case, we would also need to re-estimate all the latent variables

using only information up until that starting point.

We can forecast the observation mean µt by simulating from (6.13)-(6.18). To account

for the restriction in (6.18), we first simulate the transition length λ, and then simulate the

next state switch moment τ so that the λ is smaller than the difference between the two

subsequent state switches. To obtain a full forecasting distribution, we also simulate the

observation error εt using (6.11). If necessary, point and interval forecasts can be obtained

using expected quantiles of this distribution.

Related to forecasting is the concept of real-time monitoring, in which the estimates of

now relevant latent variables and short-horizon forecasts are updated each time a new data

point becomes available. The approach for this is comparable to the one we use for forecast-

ing, with the main difference that for real-time monitoring one needs to reapply the sampling

procedure each time period. Due to the newly available sample point, the latent variables as-

sociated with the final states in the sample will change, and the best way to account for this
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is by re-estimating the previous latent variables and the parameters. This estimation process

may take some time (depending on processor speed, programming efficiency and software),

which can be in contrast to the goals of real-time monitoring, for which in fact one needs the

updated estimates as quickly as possible after obtaining the new data point. For a quicker

updating of the latent variables of the final states, one could fix the parameters and the latent

variables of the previous states. That way, re-estimating will be done using less sets of pa-

rameters in the Gibbs sampling, which leads to less autocorrelation in the draws and thus to

a smaller simulation sample that is necessary to obtain an accurate distribution.

6.4 Application to US unemployment

In this section we illustrate our model and estimation process on monthly unemployment in

the United States for the period 1948 to 2012. Our estimation sample runs until 1992 (cov-

ering 540 months), which leaves 240 months for the forecast evaluation. For the estimation

sample we restrict our K to be an element of {15, 16, 17}, based on visual inspection of the

data.

Estimation results

Our estimation results are shown in Table 6.1 for which we have used in total 110000 itera-

tions in the sampling process. After accounting for the burn-in period of 10000 iterations and

a thinning factor of 45, this results in 2000 as-good-as-independent draws from the posterior

distribution of the parameters and the latent variables.

The estimates of β1 and β3 show that there is asymmetry concerning the switching be-

havior, although it is not statistically significant. The estimate of β2 shows that the upwards

switch is not duration dependent, as zero is approximately in the middle of the HPD inter-

val. In contrast, for the downwards switch the results show that there might be duration

dependence as zero is on the border of the interval for β2 + β3. In fact, there are many ways

in which we could have applied our thinning differently and that could have resulted in an

interval that would not include zero.

Next, the estimate of ∆µ∗ shows that on average the high states and low states in un-

employment differ about 2.8 percentage points. The ratio of ∆µ∗

σ∆µ
suggests that switches in



Table 6.1 Results on the posterior density of the main parameters of applying our model to US unemployment.

Parameter Average Standard Error 95% HPD interval
σε 0,313 0,010 0,292 0,332
β0 -1,967 0,342 -2,688 -1,347
β1 -0,594 0,476 -1,471 0,415
β2 0,021 0,019 -0,016 0,055
β3 -0,011 0,019 -0,051 0,023

∆µ∗ 2,806 0,280 2,244 3,333
σ∆µ 1,040 0,222 0,673 1,469
λ∗u 2,375 0,265 1,857 2,909
λ∗d 3,184 0,326 2,554 3,792
σλ,u 0,713 0,125 0,519 0,953
σλ,d 0,816 0,164 0,566 1,144
d∗1 46,455 29,592 0 98

β0 + β1 -2,561 0,329 -3,218 -1,940
β2 + β3 0,011 0,006 -0,001 0,022

∆µ∗

σ∆µ
2,810 0,605 1,663 3,982

Φ(0−∆µ∗

σ∆µ
) 0,008 0,015 0,000 0,033

eλ
∗
u+ 1

2
σ2
λ,u 14,558 4,612 7,857 23,568

eλ
∗
d+ 1

2
σ2
λ,d 36,669 17,654 15,177 63,317
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the wrong direction are not likely even if we would remove the truncation, as the average

of this ratio is 2.810, of which the negative (-2.810) is the 0.25-th percentile of the normal

distribution. In fact, if we would calculate for each iteration the probability that one individ-

ual state mean change is in the wrong direction (Φ(0−∆µ∗

σ∆µ
)), then the HPD-region of these

probabilities only runs to 0.033 and it has a mean of 0.008. The median is even lower, that is,

0.003. This shows that the truncation restriction is not of much influence on our estimation

results.

Finally, we discuss the estimates of the transition speed parameters. The estimates of λ∗u,

λ∗d, σλ,u and σλ,d seem to be quite accurate, considering their relatively small HPD intervals.

The average transition length however is an exponential function of both of them, which

can result in blowing up small differences to large effects. The average upwards transition

length, eλ
∗
u+ 1

2
σ2
λ,u , is 14.6, which means that on average it takes almost five quarters for

unemployment to transit from a local minimum to a local maximum, what would be called

a recession. The opposite movement takes much more time, as the average for eλ
∗
d+ 1

2
σ2
λ,d

amounts to more than three years. This shows the familiar property for unemployment that

an increase in unemployment is much quicker than a decrease.

Table 6.2 shows the average results for the latent variables. The first two columns present

results on the timing of the start of the switch (τκ). Next, the results on the length of the

transitions (λκ) follow, and the final two columns contain results on the state means (µκ).

The first fifteen states all have a state switch that falls entirely inside the sample that

runs to t = 540. These state switches can thus be estimated quite accurately in most cases.

Only the 10th state switch, which occurred around December 1971 (t = 287), has a standard

deviation that is relatively high (4.150). For this state, the observations gradually start to

decline and so there is no clear visual starting point of the transition. The model arrives at

the same conclusion. The last two states do not fall entirely inside the sample. For κ = 17,

the state switch is definitely after t = 540, but for κ = 16, this is not so clear. On average,

the switch occurs after t = 540, but in fact in 50.5% of the iterations the state switch τ16

occurs on or before t = 540. This shows why it is important to account for multiple possible

numbers of switches as it might be unclear whether a switch has occurred or not, and then

one can account for both situations. As can be expected, both τ ’s that fall (partially) outside

the sample are estimated less accurately than those inside the sample.



Table 6.2 Average results on the latent variables. For example, the sixth state switch is estimated to
start around t = 127, the transition length for this switch is about 9 and the level of the sixth state is about 5.7.

τκ λκ µκ
κ Mean StDev Mean StDev Mean StDev
0 7,273 0,097
1 11,386 0,734 8,634 1,358 4,019 0,185
2 22,685 0,979 17,582 1,402 8,024 0,059
3 69,541 0,593 5,732 1,104 5,093 0,155
4 79,874 1,515 10,316 2,370 6,885 0,062
5 116,981 0,655 7,565 1,110 3,555 0,176
6 127,021 0,999 9,207 1,523 5,746 0,089
7 150,353 1,573 6,686 2,133 4,342 0,090
8 159,719 1,667 69,800 3,184 7,373 0,060
9 263,398 0,985 12,534 1,750 5,013 0,107
10 287,225 4,150 17,099 5,828 6,031 0,090
11 318,829 0,854 8,314 1,293 2,337 0,120
12 329,791 1,674 40,408 3,041 5,156 0,113
13 380,478 1,521 36,920 1,817 1,394 0,074
14 418,860 0,816 65,760 1,992 5,672 0,069
15 507,878 1,605 21,436 3,643 3,474 0,133
16 541,674 6,440 18,445 10,247 6,070 1,105
17 578,684 17,344 9,725 6,210 3,264 1,461
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For the values of λκ in Table 6.2, we can observe an alternating pattern of high and

low values. This is due to the different transition behavior for upwards and downwards

transitions, which was also evident from the final two rows of Table 6.1. Again, of all in-

sample states, state 10 has the most uncertain estimate of the latent variable. This makes

sense, because if the start of the transition is unclear, then the length of the transition is

also most likely unclear, as that depends on the start. Also, the two latent variables that fall

outside the sample (λ16 and λ17) are both less accurate than all in-sample estimates, which

is similar to the situation for the corresponding τ variables.

For the in-sample state means (µκ in Table 6.2), we see again an alternating pattern of

high and low values, which follows directly from the relation between two subsequent state

means. The two state means that are most close to each other on average are µ9 ≈ 5.013

and µ10 ≈ 6.031, which still differ more than 1 percentage point. Also, there is no single

value that is clearly less accurate than the others. The highest in-sample posterior standard

deviation is 0.185 for µ1, while the lowest is 0.060 for µ8. The numbers in between seem to

be about evenly spread out. Even the two state means around the tenth switch, µ9 and µ10,

are both estimated quite accurately, in contrast to the situation for τ10 and λ10. Again, both

state means that are (partially) outside of the sample are estimated less accurately.

Based on our estimates of the parameters and the latent variables, some interesting graphs

can be constructed. Figure 6.6 shows the original data along with the estimated mean and

HPD intervals for the state means µt until the end of the estimation sample t = 540. We also

present 7.5 years of forecasts, all constructed using information until t = 540. It can be seen

that the in-sample intervals are much smaller than the out-of-sample intervals, as could well

be expected. Quite noticeable is that the forecasts exhibit the same cyclical property of the

model, and this is a feature that does not follow from a standard MS model with two states.

Figure 6.7 shows the probability of switching out of the state for both the upward and

the downward switch, with on the horizontal axis the time already spent in that state. These

probabilities are calculated for the entire posterior distribution of β and they incorporate the

parameter uncertainty. For both state types, the probability of switching away increases the

longer the duration of the state. For the downward switch this increase is obtained earlier

than for the upward switch, as its line is mostly above the line of the upward switch.

Figure 6.8 shows the histogram of the durations of both states, accounting for both the

uncertainty in β and for the completed transition restriction in (6.18). The histograms clearly



Figure 6.6 The mean and 95 % bounds for the estimation
and forecasted observation means. Up until the vertical line at t = 540 the mean and bounds are in-sample
and they are shown together with the original unemployment series for the period 1948 to 1992. For t > 540,
mean and bounds of out-of-sample forecasts are shown, all constructed with the information set at t = 540.
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Figure 6.7 Estimated posterior proba-
bility of switching out of a state, accounting for the uncertainty in β by using the entire posterior distribution.

show that the downward switch happens faster than the upward switch. In fact, the averages

amount to 2.3 years and 5.6 years, so upward switches occur after more than twice the time of

downward switches, which means that high states last twice as short as the lower states. For

both states an immediate switch is not impossible, although it is unlikely. As a comparison,

for a standard MS model this histogram would be monotonically declining, and an immediate

switch is actually the most likely.

Finally, Figure 6.9 shows the histogram of the length of a total cycle, thus incorporating

both an upward and a downward switch using the values of β in the same iteration of the

Gibbs sampler for both cycles. The pattern is comparable to the patterns in Figure 6.8,

which was to be expected as it is the sum of both histograms in that figure. The average cycle

length amounts to 7.8 years, which corresponds well with the common socio-economic cycle

periods mentioned in de Groot and Franses (2012).



Figure 6.8 Estimated histograms
for the duration of one state, accounting for the uncertainty in β by using the entire posterior distribution.

Figure 6.9 Estimated histograms for the length of one full cycle,
which incorporates both one upwards switch and one downwards switch together with their transition periods.
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Real-time monitoring

An interesting application of our model is real-time monitoring, in which one investigates

how much the estimates of latent variables get updated when new data points become avail-

able. We now illustrate how real-time monitoring can be applied using our model. For this

we first re-estimate all latent variables using the data only until t = 1, only until t = 2,

up to until t = 540, while fixing the parameters to the posterior distribution that has been

estimated previously. For this part of the estimation process, we can use less draws as we

can randomly draw the parameters from the posterior distribution, thereby decreasing the

autocorrelation of the draws of the latent variables. That is why we decided to use 10000

draws with a burn-in sample of 1000 for each individual monitoring process.

This results in 540 estimated distributions for each individual latent variable. Using this

we can calculate all sorts of statistics to see how the estimates evolve over time. For example,

we can calculate the estimated mean of state 5, µ5, using any possible set of information, to

see from which point on the estimate of µ5 does not vary any more. Or, we can find the width

of the 95% HPD interval of µ5, to see when the estimate of µ5 first meets a certain accuracy

requirement.

Figure 6.10 shows the average width (calculated over the entire sample period) of the

95% HPD interval for µt. This width has been calculated using information starting from

t− 100 up until t+ 100, thus using a total time period of over 16 years around each observa-

tion. This shows how the accuracy in estimating the observations’ mean evolves when more

information about that mean becomes available. It can be seen that the width decreases the

fastest just before and just after time t. There is a slower decrease for the time periods that

are well before t, while after a few months after t there is no information gain left anymore.

Next, Figure 6.11 shows the in-sample Root Mean Squared Error for each observation yt,

calculated using the in-sample forecast ŷt|t+h. As expected, for low h this value approaches

σε, while for high values of h the forecast error is larger. Even though this graph shows a

different characteristic than Figure 6.10, they both show a similar pattern.

Forecasting

We have constructed forecasts for the last 240 hold-out observations, allowing for varying

forecast horizons. We produce these forecasts starting at different starting points, for which



Figure 6.10 The average width
of the 95 % interval of the observation mean for information sets that lead or lag with horizons up to h = 100.



Figure 6.11 The in-sample root mean squared forecast error for horizons up to h = 100.
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we each time need to re-estimate the latent variables to account for the new information. We

will not update the parameter estimates, however, as these are based on the first 540 obser-

vations. For simulating the latent variables we have used the same approach as discussed for

real-time monitoring, with again 10000 iterations per information set.

We will compare the forecasting performance of our model with several others. We use

two simple forecasting models as a baseline comparison. The first of these is just taking the

average of yt for t = 1, . . . , 540, so this means that we forecast the future using the sample

average of the estimation sample. The second simple model is the Random Walk model, in

which each forecast is just the most recently observed value at that time. In other words,

ŷt+h|t = yt. We also compare our model with two other Markov Switching models, namely

the two-state and the three-state models. These models do not incorporate the duration de-

pendence or stochastic means of our model, but instead they use fixed transition probabilities

and fixed state means. To use an approach that comes close to our approach, we have esti-

mated these models using Gibbs sampling on the same estimation sample and we forecast

using draws from the entire posterior distribution of the parameters. For these simpler mod-

els, we have used 50000 iterations to estimate the parameters (after 100 burn-in iterations),

and 5000 iterations for updating the estimates as the forecasting windows moves.

Table 6.3 shows the results of this forecast comparison. For each competing model, the

RMSE (Root Mean Squared Error) has been calculated and then divided by the RMSE of our

model. Values above 1 indicate that the alternative model performs worse, and values below 1

indicate the opposite. As can be seen, our model is the best model for the short-to-mid-term:

for forecasting 6 months to 2 years ahead, our model beats the Random Walk model and a

simple first order autoregression, and it is much better than both other MS models. For the

other forecast horizons, our model is beaten by other models. On the very short horizon of 1

month, this defeat is no surprise, as our model takes no short-term information into account

and the two models that beat our model here do. On the other hand, we easily outperform

both other MS models again for 1 month ahead. On the longer term (more than 3 years), our

model loses from all alternatives. For 3 to 5 years ahead the forecasting performance is not

too bad as our model still beats the Random Walk, and no other model outperforms by more

than 8%. For the two longest horizons however, our model performs very poorly. This might

be because in the long-run our simulated state cycles are often out-of-sync with reality. This

latter feature is studied next, using simulations.
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Table 6.3 RMSE of other models
relative to our model. A value larger than 1 indicates that the corresponding model performs less than our model
for the corresponding horizon, while a value smaller than 1 indicates that the model outperforms our model.

Forecast horizon Fixed Mean Random Walk AR1 MS2 MS3
1 month 9,599 0,762 0,766 5,290 4,615
6 months 3,314 1,095 1,083 2,256 2,016

1 year 1,838 1,096 1,055 1,496 1,426
1.5 years 1,366 1,106 1,038 1,228 1,233
2 years 1,142 1,131 1,033 1,083 1,163
3 years 0,978 1,184 1,035 0,972 1,036
4 years 0,951 1,218 1,031 0,955 0,973
5 years 0,947 1,175 0,968 0,941 0,921

7.5 years 0,769 0,786 0,680 0,751 0,726
10 years 0,791 1,062 0,783 0,770 0,787

6.5 Simulations

In this section we investigate the accuracy of our estimation method in practically realistic

situations. We do this by simulating multiple time series from a Data Generating Process

(DGP) and by applying our estimation method to these time series.

As DGP we use the model and its parameters as presented in Section 6.4. We set the sam-

ple size in our simulations at 540, which is the length of the time series used in Section 6.4,

and at 2160. The number of simulated time series in both cases is 400, while we use 10000

iterations in the estimation process after a burn-in of 1000 iterations.

Various summary statistics of the simulation results are shown in Table 6.4. As these

results are calculated across 400 time series with 10000 iterations each in the estimation pro-

cess, we report summary scores of various statistics, like for example the standard deviation

of the mean. In that case, the standard deviation is calculated based on 400 values of the

mean, of which each individual value is based on 10000 iterations.

Table 6.4 also shows the values of the parameters in the DGP. For most parameters, the

mean of the mean and median of the median are quite close to the true DGP values. This

holds true for T = 540 and even more so if T = 2160. Moreover, in all cases the spread

in the point estimate (StDev of mean) is smaller when using more observations, which was

to be expected. For some variables the StDev of mean for T = 2160 is about 10% of the

same statistic for T = 540, while for most it is about a half. The least improvement is made
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Table 6.4 Summary results of multiple parameter distributions estimated using
simulated data from the same Data Generating Process for time series length T = 540 and T = 2160, with
400 time series for each case. Parameters have been estimated using Gibbs sampling with 10000 iterations
(after a burn-in of 100 iterations). The table presents the mean and standard deviation of the mean of the
posterior distribution, the median of the median of the posterior distribution, the mean of the standard deviation
of the posterior distribution, and the mean of the quantile of the DGP parameter in the posterior distribution.
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σε 0,313 0,315 0,011 0,315 0,012 0,544 0,315 0,007 0,314 0,005 0,565
β0 -1,967 -3,813 3,225 -2,919 1,105 0,072 -2,597 0,304 -2,568 0,255 0,030
β1 -0,594 0,116 3,404 -0,354 1,462 0,599 -0,319 0,421 -0,352 0,338 0,693
β2 0,021 0,094 0,162 0,053 0,047 0,835 0,037 0,016 0,036 0,010 0,821
β3 -0,011 -0,068 0,163 -0,030 0,050 0,315 -0,025 0,017 -0,023 0,010 0,251

∆µ∗ 2,806 2,742 0,309 2,743 0,344 0,445 2,775 0,169 2,781 0,163 0,447
σ∆µ 1,040 1,080 0,247 1,023 0,279 0,482 1,045 0,111 1,036 0,119 0,482
λ∗u 2,375 1,914 5,935 2,350 1,356 0,495 2,344 0,163 2,342 0,156 0,442
λ∗d 3,184 3,151 0,364 3,155 0,358 0,469 3,161 0,187 3,176 0,165 0,467
σλ,u 0,713 0,726 0,130 0,675 0,202 0,416 0,683 0,055 0,672 0,063 0,321
σλ,d 0,816 0,764 0,139 0,709 0,200 0,302 0,738 0,062 0,728 0,070 0,185
d∗1 46,455 49,858 18,771 49 24,947 0,497 51,329 15,241 50 28,022 0,516

for d∗1 (only a 16% drop to 84% of previous value), which might be explained by the fact

that this value is for a large part affected by the initial observations only, and these cannot be

influenced by the choice of T .

The β parameters are the only ones that are not always accurately estimated, especially

if T = 540. The reason for the large differences in the mean of the posterior distribution

(column StDev of mean) is the apparently small number of state switches in a sample of this

length. On average the number of state switches is about equal to 15, as in the estimation

sample of Section 6.4, which is already quite small, and for some of the simulated series

this number dropped to as low as 10. Naturally, estimating the parameters in a probit model

with four explanatory variables using only 10 observations with a ’1’ results in substantial

uncertainty around the estimates. Having a longer time series obviously will make this sit-

uation less likely, and this is evident from the much lower values of StDev of mean for β

when T = 2160. Also, for larger T the point estimates are on average much closer to the

true values, even though there is still room for improvement.

The final two columns for both values of T provide an indication of how the DGP config-

urations are located as compared to the posterior. The mean of StDev shows how narrow (or
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wide) the estimated posterior is. Most posteriors are much more narrow for a higher T , with

d∗1 as only exception as that parameter is not really affected by the value of T . The mean of

quantile shows the quantiles where the true parameters are located. Both sample sizes show

a similar pattern, so the sample size does not seem to matter much.

6.6 Conclusion

In this chapter we have introduced a new model that can deal with changing levels and

cyclicality in time series. We have proposed a Markov switching model with two states that

each have a stochastic mean, where the transition behavior of these states is governed by

duration dependence and stochastic linear transition periods. We have shown with artificial

data that data from this model have characteristics comparable with actual data. We have

presented an estimation method that uses Gibbs Sampling with Data Augmentation, which

also generates a density forecast. We have applied this estimation method to postwar monthly

US unemployment and we have found that for two to three years ahead forecasts, our model

has superior forecasting performance compared to a set of benchmark models. We have also

shown, using a set of simulations, that the parameters of our model can be estimated quite

accurately, granted that there is a sufficient number of state switches.

We envisage various potential extensions to our model and analysis. The major drawback

of our model, as we have seen in the simulation exercise, is the potential difficulty in esti-

mating parameters that fully depend on state switches. For many currently available samples

of macroeconomic data, one typically encounters a limited number of state switches. One

way to alleviate this is to jointly model several time series for which a common parameter

can be assumed. Alternatively, the parameters of the different time series can be linked using

an underlying joint distribution.

Applications to other than macroeconomic series can be particularly interesting. We then

think of high-frequency financial time series data or data in marketing contexts, where differ-

ent regimes may occur much more frequently. Other extensions could include implementing

an autoregressive model to the stochastic-mean part of the model (6.15) or to the shocks

in (6.11). An alternative distribution like a log-normal distribution instead of the truncated

normal in (6.15) could also be considered.





Nederlandse samenvatting

(Summary in Dutch)

Het is gebruikelijk om herzieningen in voorspellingen voor een bepaalde macro-

economische variabele te evalueren door die herzieningen te regresseren op de herzieningen

van een periode ervoor. Onder de veronderstelling van voorspelefficiëntie in zwakke vorm

moet de correlatie tussen de huidige herziening en die van een periode terug gelijk aan nul

zijn. De empirische bevindingen in de literatuur suggereren dat de stelling dat deze corre-

latie nul is zeer vaak verworpen wordt, waarbij men een positieve correlatie vindt (met als

interpretatie een zogeheten onderreactie), maar ook een negatieve correlatie (die als overre-

actie geı̈nterpreteerd wordt). Hoofdstuk 2 betreft een methode om dergelijke correlaties op

een eenvoudige en duidelijke manier te kunnen interpreteren, ook als ze niet nul zijn. De

aanpak is gebaseerd op de veronderstelling dat de numerieke voorspellingen kunnen worden

opgesplitst in een voorspelling vanuit een econometrisch model en de intuı̈tie van een expert.

Het blijkt dat de interpretatie van het teken van de correlatie tussen de huidige herziening en

die van één periode eerder afhankelijk is van het proces dat intuı̈tie stuurt, en daarnaast van

de relaties tussen intuı̈tie en nieuws (ook wel: schokken in de numerieke voorspellingen).

Hieruit volgt dat de geschatte correlaties niet rechtstreeks kunnen worden geı̈nterpreteerd

als onderreactie of overreactie. Daarnaast is het aangetoond dat de onderreactie en over-

reactie kan veranderen over de tijd, mits de voorspellingen goed worden gemodelleerd en

geı̈nterpreteerd. Het hoofdstuk bevat ook een empirisch voorbeeld om de bruikbaarheid van

de voorgestelde werkwijze te laten zien.

Hoofdstuk 3 richt zich ook op voorspellingen van experts. Er is voldoende empirisch be-

wijs dat de wijze waarop aanpassingen door experts van modelvoorspellingen worden gedaan

verbeterd kan worden. Eén manier om mogelijke verbetering te krijgen betreft het verstrek-
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ken van verschillende vormen van feedback aan de experts. Ook wordt vaak gevonden dat

de experts geen homogene groep vormen. Hoofdstuk 3 introduceert een op data gebaseerde

methodologie om latente clusters van voorspellers te onderscheiden, en past dit toe op een

volledig nieuwe, grote dataset met daarin modelvoorspellingen, zowel inclusief als exclusief

aanpassingen door experts, en realisaties van de betreffende variabelen. Met behulp van deze

data kunnen twee clusters worden geı̈dentificeerd. Vervolgens worden de gevolgen voor het

verstrekken van feedback aan deze clusters besproken.

Hoofdstuk 4 introduceert een nieuwe methode van dataverzameling om consumentenver-

trouwen per dag per individu te meten. De aldus verkregen data maakt het mogelijk om de

dynamische correlatie van deze index van consumentenvertrouwen statistisch te analyseren

en conclusies te trekken over de overgangskansen. Dat laatste is niet mogelijk voor de maan-

delijkse index zoals die verzameld wordt door statistische bureaus op basis van herhaalde

steekproeven. In een toepassing op het meten van het Nederlandse consumentenvertrouwen

wordt aangetoond dat de additionele informatie in de nieuwe indicator helpt om consumen-

tengedrag beter te voorspellen.

Hoofdstuk 5 betreft een analyse van ongeveer 300.000 winstverwachtingen, gecreëerd

door 18.000 individuele voorspellers voor de winst van meer dan 300 S&P beursgenoteerde

bedrijven. De analyse toont aan dat deze winstverwachtingen voor een groot deel te voor-

spellen zijn met behulp van een statistisch model dat openbaar beschikbare informatie bevat.

Daarna wordt de focus verlegd op de onvoorspelbare componenten, die kunnen worden ge-

zien als de eigen expertise van de voorspellers. Hieruit kan worden geleerd dat kleine afwij-

kingen ten opzichte van de voorspelde winstverwachtingen leiden tot een betere voorspel-

nauwkeurigheid. Op basis van prestaties in het verleden is het mogelijk om de toekomstige

prestaties van de individuele voorspellers in zekere mate te voorspellen.

Tenslotte wordt in Hoofdstuk 6 een nieuw tijdreeksmodel geı̈ntroduceerd dat patronen

beschrijft die overeenkomen met wat de maandelijkse werkloosheidscijfers van de Verenigde

Staten laat zien. Dit betreft bekende niet-lineaire eigenschappen, zoals steilere toenames

in werkloosheid tijdens recessies dan de dalingen in expansies. Daarnaast bevat de data

ook andere eigenschappen die minder vaak meegenomen worden, zoals twee stochastische

werkloosheidsniveaus, met transitieperiodes tussen elke keer dat de werkloosheid omslaat

van laag naar hoog. Daarnaast moet een geschikt model in staat zijn om voorspellingen

buiten de steekproef te genereren met eigenschappen die lijken op de eigenschappen in de
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steekproef. Het nieuwe en flexibele model heeft al deze eigenschappen. Een toepassing op

de maandelijkse werkloosheid in de Verenigde Staten laat zien dat dit model een toegevoegde

waarde heeft, zowel om patronen in de steekproef te verklaren als om werkloosheid buiten

de steekproef te voorspellen.
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