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Dynamic and Hierarchical Genome Organization
The different organization levels of genomes bridge several orders of magnitude concerning space and 

time. How all of these organization levels connect to processes like gene regulation, replication, 
embryogeneses, or cancer development is still unclear? 
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Chromatin Conformation and Higher-Order Topologies
It becomes increasingly clearer, that the chromatin conformation is a random organization of nucleosomes, 

which depending on external or modification conditions has different condensation degrees, with a 
prevalence for the 30nm fiber with ~6nucleosomes per 11nm. This seems to make loops which further 

cluster to form aggregates more or less rosette-like which then constitute the chromosome. 
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Integral Models of Cell Nuclear Organization I
Already Rabl and Boveri were aware of the obvious fact that the organization of genomes has to be 

consistent from the sequence level to the morphology of the whole cell nucleus. Although they might be 
different in detail their common seem is recursive folding and clustering thereof with variation/

modification and dynamics accounting for different nuclear states and function. 
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Integral Models of Cell Nuclear Organization
The biggest advantage of integral models is the again obvious and simple fact, that they allow the validation 

from the consistency of different levels of organization from the other levels. Thus, e.g. the so called 
Interchromosmal Domain Model can be ruled out by simple volumenous thought…
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3D Architecture of the Prader-Willi Region
Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region 

combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale 
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Archticture & Function of the IgH Locus
Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence 

microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop 
Subcompartiment organization of the IgH locus with functional relevant distances.
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“Synoptic” 3D Architecture of Various Loci 
A history “synoptic” comparison of the spatial distance mapping from their original background and aim, 

FISH methodological protocols, via microscopic imaging and restoration analysis procedures, to their 
interpretation, reveals that with time Multi-Loop Subcompartment models are fovoured.



“Synoptic” 3D Architecture of Various Loci 
A history “synoptic” comparison of the spatial distance mapping from their original background and aim, 

FISH methodological protocols, via microscopic imaging and restoration analysis procedures, to their 
interpretation, reveals that with time Multi-Loop Subcompartment models are fovoured.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

AB

D

C cd

e
f

g

hA

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

genomic distance between genomic markers [Mbp]

m
ea

n 
po

sit
ion

 in
de

pe
nd

an
t s

pa
tia

l d
ist

an
ce

 [µ
m

]

B

A

B

D

C b

c
d

e

f

g
h

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0
C

A
B

D
C

b

c

d

ef
gh

m
ea

n 
po

sit
ion

 in
de

pe
nd

an
t s

pa
tia

l d
ist

an
ce

 [µ
m

]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

genomic distance between genomic markers [Mbp]

A

B

D

C

b
c

d

e
f

g
hD 1.85 µm

1.75 µm



DNA Fragment Distribution after Ione-Irradiation
The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous 

spatial  double strand breackage probability depends on the detailed folding topology of the chromatin 
fiber and the RW/GL and MLS models differ largely.
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Selective Chromosome Interaction Capture (T2C)
T2C is a novel selective high-resolution high-throughput chromosome interaction capture, in which the relation 
between, region size, resolution, interaction frequency range, and sequencing depth can be designed towards the 
goal of the experiment. T2C reaches the limit of the “genomic” uncertainty principle and statistical mechanics.
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Stable Consensus Architecture of Genomes
Due to the high signal-to-noise ratio of T2C reaching 5-6 orders of magnitude interaction maps reveal 

definitely an extremely high degree of similarity between different species, cell types, or functional states, thus 
functional differences are variation of a stable theme persisting through the cell cycle

TEV-HEK293T cohesin intactHB2 HRV-HEK293T cohesin cleaved
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Fine Structure of Loop Aggregates/Rosettes
Depending on the resolution, the loops within a domain an their arrangement in loop aggregates/rosettes can be 

shown as well as the details of how the loops are organized at their base as well as their aggregated rosette 
core: parallel loop fibres exist at the loop base with ~6kbp and these form the core.

~ 400 kbp
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Simulation of Single Chromosomes
The 30 nm chromatin fiber is modeled as a polymer chain with stretching, bending, and excluded volume 

interactions. Monte Carlo and Brownian Dynamic methods lead to thermodynamical equilibrium configurations.
All models form chromosome territories with big voids and different chromatin morphologies. Experimental 
territory and subcompartment diameters agree best with an MLS model with 80 to 120 kbp loops and linkers.

RW/GL  model,  loop  size  5  Mbp,  after 
~80.000 MC and 1000 relaxing BD steps. 
Large loops intermingle freely and reach out 
of the chromsome territory, thus forming no 
distinct features like in MLS model.

MLS model,  loop size  126kbp,  linker  size 
126  kbp,  after  ~50.000  MC  and  1000 
relaxing  BD  steps.  Here  rosettes  form 
subcompartments as separated organization-
al and dynamic entities.

RW/GL  model,  loop  size  126  kbp,  after 
~80.000 MC and 1000 relaxing BD steps. 
Large loops intermingle freely thus forming 
no distinct features like in MLS model.

Metaphase  starting  configuration  with 
ideogram bands in red/green, linker in grey.
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Simulation of Whole Nuclei with all 46 Chromosomes
Starting with some metaphase arrangement of cylindrical chromosomes, interphase nuclei with a 30 nm fiber 

resolution and at thermodynamical equilibrium are created in 4 steps using simulated annealing and Brownian 
Dynamics methods with stretching, bending, excluded volume and a spherical boundary interactions.

The chromosome territory position depends on their metaphase position and is reasonably stable.
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Simulated Interaction Maps
Simulated spatial distance maps as well as simulated interaction maps result in the representation of every 

parameter variation, and also exhibit the fine-structure describing the loop base as well as rosette core. Thus 
from the quasi-fibre to the entire chromosome the architecture can be understood in detail.
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Variation of a Consensus Architecture Scheme
The difference between different cell types, functional states or even species is minor despite depending on the 
region. From this, the chromatin fibre conformation, loop position, and their association into loop aggregates/ 

rosettes can be derived, simulated by polymer models and finally visualized.
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DNA Sequence Organization
Determination of the concentration fluctuation function C(l) and its local slope the correlation 

coefficient δ(l) are an indication for the i) degree of long-rang scaling behaveour, ii) general multi-
scaling, and iii)  fine-structure features, which all are connected to all levels of genome organization and 

especially also the three-dimensional genome architecture. 
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Scaling Analysis
Scaling analysis show again the entire bandwidth of architectural effects in an aggregated manner. Beyond, 
they show the scale bridging of the structures and the evolutionary holistic entanglement between the 3D 

architecture and the DNA sequence organization itself.
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Simulation of Chromatin Quasi-Fibres
The position of nucleosomes influence greatly the structure of chromatin fibers done on super-computers. Here a 

dedicated workflow is applied, with which overlapping nucleosome populations can be analyzed and the best 
positioning of nucleosomes by Monte Carlo simulated annealing can be achieved. For an actual locus in a spherical 

confinement then a 3D independent nucleosome fiber conformation can be simulated.

Analysis of Overlapping Nucleosome Populations  

d=1000nm

d=500nm

d=200nm

Monte Carlo Simulation of SAMD4A Mouse ES Cells 



From Fiber Topology to Nuclear Morphology
Chromosome territories form in the RW/GL and the MLS model. However, only the MLS model leads 

distinct subcompartments and low chromosome and subcompartment overlap. Best agreement is reached 
for an MLS model with 80 to 120 kbp loops and linkers in nuclei with 8 to 10 µm diameter.

The simulated nuclear morphology reflects the chromosome fiber topology of different models in detail.

rendering

electron microscopy

electron microscopy territory 
painting

confocal microscopy
 100x objective, theoretic resolution

confocal microscopy 
territory painting

confocal microscopy
63x objective, real resolution

A: MLS in 6 µm nucleus
      I: 63 kbp loops, 63 kbp linkers
      II: 63 kbp loops, 252 kbp linkers
      III: 126 kbp loops, 252 kbp linkers

B: MLS in 8 µm nucleus
      I: 126 kbp loops, 126 kbp linkers
      II: 84 kbp loops, 126 kbp linkers

C: MLS in 10 µm nucleus
      126 kbp loops, 126 kbp linker,
      not totally relaxed

D: RW/GL in 12 µm nucleus
      5 Mbp loops
      not totally relaxed

intensity / density
0.0 0.5 1.0

1 3 5 7 9 11 13 15 17 19 21 Y
2 4 6 8 10 12 14 16 18 20 22 X

Homologous Chromosome Painting



HeLa, H2A-YFP

LCLC 103H, H2A-CFP

HeLa, mH2A1.2-YFP

Cos7, H1.0-GFP

ID13, H2A-YFP

HeLa, H2A-YFP,

natural promoter

In vivo Morphology & Chromatin Distribution
The stable expression of fusions between histones and autofluorescent proteins and the integration into 

nucleosomes allows the minimal invasive investigation of the structure and dynamics of chromatin.
The clustered morphology in detail favour an MLS like chromatin topology.



Fine Morphology of Nuclei
High resolution rendering and simulated electron microscopy including territory painting reveal not only 

again the model details but also that any location in the nucleus is accessible to biological molecules <15 nm 
in diameter and that even the Extended Interchromosomal Domain hypothesis is oversimplified.

MLS 
models 
model with 
126 kbp 
loops and 
linkers in a 
10 µm 
nucleus.



Scaling of the Chromatin Fiber Topology
The spatial-distance and exact yard-stick dimension distinguish between the simulated models in detail.The 
MLS model shows  a globular and fine-structured multi scaling behaviour due to the loops froming rosettes. 
This agrees with DNA fragmentation by Carbon ion irradiation and the appearance of fine-structured multi-

scaling long-range correlations found in the sequential organization of genomes.
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Scaling of the Chromatin Morphology & Distribution
The local (inverse-) mass dimension distribution distinguishs between the models in detail and show also a 
multi-scaling behaviour with globular feature for the MLS model like the scaling of the fiber topology. With 

the mass dimension as function of intensity separates very well between different nuclei in vivo.
Consequently, the chromatin morphology is causally and quantitatively connected to the fiber topology.
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Quantified TSA induced Morpholoy Changes
Trichostatin A induced histone acetylation can be quantified by in vivo H2A-GFP confocal images and 

image correlation spectroscopy (iFCS), which is a scaling analysis, and reveals the opening of chromatin, 
and thus reorganization changes on scales from 0.2 to ~1µm, consistent with MLS models.
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Diffusion of Particles in the Nucleus
Due to the volume and spatial relation ships in the nucleus typical particles reach almost any location in the 

nucleus by moderately obstructed diffusion: a 10 nm particle moves 1 to 2 µm within 10 ms.
The structural influence on the obstruction degree is random for Alexa 568  as function of the chromatin 
distribution visualized by H2A CFP in vivo and measured by fluorescence correlation spectroscopy (FCS)

€ 

r2 ∝ t2/Dw
Nuclear
Volume
[µm3]

115
268
523
904

Nuclear
diameter

[µm]

6
8

10
12

Mean Nucloesome
Concentration

[µM]

251
107
55
32

Chromatin Volume
Fraction

[%]

20.1
8.6
4.4
2.6

Mean Isotropic
Mesh Spacing

[nm]

41
64
90

117

0 1 2
2

3

4

relative H2A-CFP intensity

relative H2A-CFP intensity

an
om

al
y 

pa
ra

m
et

er

anom
aly param

eter

frequency

2.0

3.0

4.0

5.0

6.0

10.0

0.0 20 40 60 80 100 120 160

an
om

al
y 

pa
ra

m
et

er
 D

diameter of spheres [nm]
140

7.0

8.0

9.0

W

Nuclear 
Diameter 6 µm                8 µm               10 µm                   12 µm

Chro
mati

n f
ibe

r d
iam

ete
r 

25
 nm

 
30

 nm
 

35
 nm

 
40

 nm



In Vivo Nucleosome Concentrations and 3D architecture
Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy (FCS) and 

confocal laser scanning microscopy (CLSM) reveals the association of nucleosomes and their kinetics as well as 
again the typical expected distribution of a multi-loop aggregate/rosette.



In Vivo Dynamics and 3D architecture
Fluorescence correlation spectroscopy (FCS) also reveals the dynamics of nucleosomes bound to DNA, i.e. FCS 

measures the movement of the chromatin quasi-fibre and its constraining architecture. This shows again a 
differentially compacted quasi-fibre folded into multi-loop aggregates/rosettes with functional differences as to 

e.g. hetero- and euchromatin or induced disturbances chromatin fiber (de-)condensation (+TSA, -ATP)
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Conclusion
The compacted chromatin quasi-fibre, folds into stable loop-aggregates connected by a linker !

Every structural level of nuclear organization including its dynamics is
connected and represented in all the other levels in a holistic systems genomics manner.

Ø  The 3D genomes architecture consists of chromatin quasi-fibres (5±1 nuc. / 11 nm, Lp of 80-120 nm), 
forming stable loop aggregates/rosettes (~40-100 kbp loops, ~60 kbp linkers).

Ø  The  dynamics  of  genomes  follows  the  3D  genome  architecture  in  detail  and  determines  in  an 
inseparable entanglement with the architecture genome function.

Ø  From the single base pair to the entire cell nucleus, all genomic levels represent all other levels and by 
modification a code is present and used to store genetic information.

Ø  Genomes have a consensus organization with only small  variation from the basic theme on each 
compaction level of the genome and these small variations determine genome function.

Ø  Genome organization and function cannot be determined or understood from a single organizational 
level but only in a holistic systems genomics manner integrating all parts of the system. 

Ø  The genome behaves on the basis of a genomic statistical mechanics with genomic
uncertainty principles attached !



Evolutionary Architecture Perspective
Only a compacted chromatin quasi-fibre, folded into stable loop-aggregates connected by a linker 

allows to guaranty the functional informational requirements of genomes:

i) storage stability/flexibility, ii) readout, and iii) replication !

Ø  Storage stability/flexibility:
The packaging ratio/scale  into  a  quasi-fibre  and stable  loops  forming rosettes  is  optimal  for the 
physical stability of genomes, while it is flexible enough to allow functional differences as well as react 
to entropic and other damages.

Ø  Readout:
The dynamics this architecture allows expression/regulation by self-organization into (in-)active units 
already in proximity, and guaranties at the same time accessibility to and from the information for 
factors as well transcripts.

Ø  Replication:
The 2D knot-free topology as well as the packaging ratio/scale into a quasi-fibre and stable loops 
forming rosettes, allows concatenation free replication with low error/damage rate due to the easy 
block-wise proximity organization as well as the easy physical (de-)condensation during cell division.

Form follows function and function follows form!
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Abstract 
 
 
The dynamic three-dimensional chromatin architecture of genomes and the obvious co-evolutionary connection 
to its function – the storage and expression of genetic information – is still debated after ~170 years. With a 
systems genomics approach combining a novel selective high-throughput chromosomal interaction capture 
(T2C) with quantitative polymer simulations and scaling analysis of architecture and DNA sequence, we 
determined and cross-proved the final architecture of genomes with unprecedented molecular resolution and 
dynamic range from single base pairs to entire chromosomes: for several genetic loci of different species, cell 
type, cell cycle, and functional states a chromatin quasi-fibre exists with 5±1 nucleosome per 11 nm, which folds 
into stable(!) 40-100 kbp loops forming stable(!) aggregates/rosettes which are connected by a  ~50 kbp 
chromatin linker. Polymer simulations using Monte Carlo and Brownian dynamics approaches confirm this and 
predict and explain additional experimental findings. Beyond, a novel fluorescence correlation spectroscopy 
(FCS) approach combined with analytical polymer models measures the architectural dynamics in vivo, and 
agrees with the before mentioned conclusion using completely independent means. Beyond, we find a fine-
structured multi-scaling behaviour of both the architecture and the DNA sequence, showing for the first time 
directly the tight entanglement between architecture and sequence. This agrees with the outcome of a synopsis 
e.g. with previous spatial distance measurement studies, in vivo morphology of entire cell nuclei, or electron 
microscopy of chromosome spreading studies, as well as the heuristics of the field in the last 170 years. This 
architecture has fundamental consequences for the entire system of the storage and expression of genetic 
information as well as for its investigation: E.g. this architecture, its dynamics, and accessibility balance stability 
and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization 
of (in)active units already in proximity. Thus, both the T2C and FCS approaches open the door to “architectural 
and dynamic sequencing” of genomes at a resolution where a genome mechanics with corresponding uncertainty 
principles applies. Consequently, this will lead now to a detailed understanding of genomes with fundamental 
new insights and huge novel perspectives for diagnosis, treatment and genome engineering efforts in the future. 
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