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Dynamic and Hierarchical Genome Organization

The different organization levels of genomes bridge several orders of magnitude concerning space and
time. How all of these organization levels connect to processes like gene regulation, replication,
embryogeneses, or cancer development is still unclear?
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Chromatin Conformation and Higher-Order Topologies

It becomes increasingly clearer, that the chromatin conformation is a random organization of nucleosomes,
which depending on external or modification conditions has different condensation degrees, with a
prevalence for the 30nm fiber with ~6nucleosomes per 11nm. This seems to make loops which further
cluster to form aggregates more or less rosette-like which then constitute the chromosome.

A-C: Voet &Vo;t D: Reznik et al.
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Integral Models of Cell Nuclear Organization I

Already Rabl and Boveri were aware of the obvious fact that the organization of genomes has to be
consistent from the sequence level to the morphology of the whole cell nucleus. Although they might be
different in detail their common seem is recursive folding and clustering thereof with variation/
modification and dynamics accounting for different nuclear states and function.
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Integral Models of Cell Nuclear Organization

The biggest advantage of integral models is the again obvious and simple fact, that they allow the validation
from the consistency of different levels of organization from the other levels. Thus, e.g. the so called
Interchromosmal Domain Model can be ruled out by simple volumenous thought...
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.
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3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.
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microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop

3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
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3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.
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“Synoptic” 3D Architecture of Various Loci

A history “synoptic” comparison of the spatial distance mapping from their original background and aim,
FISH methodological protocols, via microscopic imaging and restoration analysis procedures, to their
interpretation, reveals that with time Multi-Loop Subcompartment models are fovoured.
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“Synoptic” 3D Architecture of Various Loci

A history “synoptic” comparison of the spatial distance mapping from their original background and aim,
FISH methodological protocols, via microscopic imaging and restoration analysis procedures, to their
interpretation, reveals that with time Multi-Loop Subcompartment models are fovoured.
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DNA Fragment Distribution after Ione-Irradiation

The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous
spatial double strand breackage probability depends on the detailed folding topology of the chromatin
fiber and the RW/GL and MLS models differ largely.
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DNA Fragment Distribution after Ione-Irradiation

The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous
spatial double strand breackage probability depends on the detailed folding topology of the chromatin
fiber and the RW/GL and MLS models differ largely.
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Selective Chromosome Interaction Capture (T2C)

T2C is a novel selective high-resolution high-throughput chromosome interaction capture, in which the relation
between, region size, resolution, interaction frequency range, and sequencing depth can be designed towards the
goal of the experiment. T2C reaches the limit of the “genomic” uncertainty principle and statistical mechanics.
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Simulated Interaction Maps

Simulated spatial distance maps as well as simulated interaction maps result in the representation of every
parameter variation, and also exhibit the fine-structure describing the loop base as well as rosette core. Thus
from the quasi-fibre to the entire chromosome the architecture can be understood in detail.
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Simulated Interaction Maps

Simulated spatial distance maps as well as simulated interaction maps result in the representation of every
parameter variation, and also exhibit the fine-structure describing the loop base as well as rosette core. Thus
from the quasi-fibre to the entire chromosome the architecture can be understood in detail.
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Variation of a Consensus Architecture Scheme

The difference between different cell types, functional states or even species is minor despite depending on the
region. From this, the chromatin fibre conformation, loop position, and their association into loop aggregates/
rosettes can be derived, simulated by polymer models and finally visualized.
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DNA Sequence Organization

Determination of the concentration fluctuation function C(/) and its local slope the correlation
coefficient (/) are an indication for the i) degree of long-rang scaling behaveour, ii) general multi-
scaling, and iii) fine-structure features, which all are connected to all levels of genome organization and
especially also the three-dimensional genome architecture.
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DNA Sequence Organization

Determination of the concentration fluctuation function C(/) and its local slope the correlation
coefficient (/) are an indication for the i) degree of long-rang scaling behaveour, ii) general multi-
scaling, and iii) fine-structure features, which all are connected to all levels of genome organization and
especially also the three-dimensional genome architecture.
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DNA Sequence Organization

Determination of the concentration fluctuation function C(/) and its local slope the correlation ,.;
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coefficient (/) are an indication for the i) degree of long-rang scaling behaveour, ii) general multi- i
scaling, and iii) fine-structure features, which all are connected to all levels of genome organization and
especially also the three-dimensional genome architecture.
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Scaling Analysis

Scaling analysis show again the entire bandwidth of architectural effects in an aggregated manner. Beyond,
they show the scale bridging of the structures and the evolutionary holistic entanglement between the 3D )
architecture and the DNA sequence organization itself. VL e SER @
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Simulation of Chromatin Quasi-Fibres

The position of nucleosomes influence greatly the structure of chromatin fibers done on super-computers. Here a
dedicated workflow is applied, with which overlapping nucleosome populations can be analyzed and the best
positioning of nucleosomes by Monte Carlo simulated annealing can be achieved. For an actual locus in a spherical
confinement then a 3D independent nucleosome fiber conformation can be simulated.

Monte Carlo Simulation of SAMD4A Mouse ES Cells

d=1000nm d=200nm




From Fiber Topology to Nuclear Morphology

Chromosome territories form in the RW/GL and the MLS model. However, only the MLS model leads
distinct subcompartments and low chromosome and subcompartment overlap. Best agreement is reached
for an MLS model with 80 to 120 kbp loops and linkers in nuclei with 8 to 10 zm diameter.

The simulated nuclear morphology reflects the chromosome fiber topology of different models in detail.

rendering

electron microscopy

electron microscopy territory
painting

confocal microscopy
100x objective, theoretic resolution

confocal microscopy
63x objective, real resolution

confocal microscopy
territory painting

Homologous Chromosome Painti
.3 5 7 9 11 13 15 17 1
4 6 8 10 12 14 16 18
=

N

AT

A: MLS in 6 ym nucleus
I: 63 kbp loops, 63 kbp linkers
II: 63 kbp loops, 252 kbp linkers
IIT: 126 kbp loops, 252 kbp linkers

B: MLS in 8 ym nucleus
I: 126 kbp loops, 126 kbp linkers
II: 84 kbp loops, 126 kbp linkers

C: MLS in 10 gm nucleus
126 kbp loops, 126 kbp linker,
not totally relaxed

D: RW/GL in 12 ym nucleus
5 Mbp loops
not totally relaxed




Bk s

fachhochschule
Stralsund




Fine Morphology of Nuclei

High resolution rendering and simulated electron microscopy including territory painting reveal not only
again the model details but also that any location in the nucleus is accessible to biological molecules <15 nm
in diameter and that even the Extended Interchromosomal Domain hypothesis is oversimplified.

Homologous Chromosome Painting

Chr. 22a;



Scaling of the Chromatin Fiber Topology

The spatial-distance and exact yard-stick dimension distinguish between the simulated models in detail.The

MLS model shows a globular and fine-structured multi scaling behaviour due to the loops froming rosettes.

This agrees with DNA fragmentation by Carbon ion irradiation and the appearance of fine-structured multi-
scaling long-range correlations found in the sequential organization of genomes.
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Scaling of the Chromatin Morphology & Distribution

The local (inverse-) mass dimension distribution distinguishs between the models in detail and show also a
multi-scaling behaviour with globular feature for the MLS model like the scaling of the fiber topology. With
the mass dimension as function of intensity separates very well between different nuclei in vivo.

Consequently, the chromatin morphology is causally and quantitatively connected to the fiber topology. A i
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Quantified TSA induced Morpholoy Changes

Trichostatin A induced histone acetylation can be quantified by in vivo H2A-GFP confocal images and
image correlation spectroscopy (iFCS), which is a scaling analysis, and reveals the opening of chromatin,
and thus reorganization changes on scales from 0.2 to ~1um, consistent with MLS models.
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Quantified TSA induced Morpholoy Changes

Trichostatin A induced histone acetylation can be quantified by in vivo H2A-GFP confocal images and
image correlation spectroscopy (iFCS), which is a scaling analysis, and reveals the opening of chromatin,
and thus reorganization changes on scales from 0.2 to ~1um, consistent with MLS models.




Diffusion of Particles in the Nucleus

Due to the volume and spatial relation ships in the nucleus typical particles reach almost any location in the
nucleus by moderately obstructed diffusion: a 10 nm particle moves 1 to 2 gm within 10 ms.

The structural influence on the obstruction degree is random for Alexa 568 as function of the chromatin
distribution visualized by H2A CFP in vivo and measured by fluorescence correlation spectroscopy (FCS) oz B = i
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In Vivo Nucleosome Concentrations and 3D architecture

Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy (FCS) and
confocal laser scanning microscopy (CLSM) reveals the association of nucleosomes and their kinetics as well as
again the typical expected distribution of a multi-loop aggregate/rosette.
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In Vivo Dynamics and 3D architecture

Fluorescence correlation spectroscopy (FCS) also reveals the dynamics of nucleosomes bound to DNA, i.e. FCS
measures the movement of the chromatin quasi-fibre and its constraining architecture. This shows again a
differentially compacted quasi-fibre folded into multi-loop aggregates/rosettes with functional differences as to
e.g. hetero- and euchromatin or induced disturbances chromatin fiber (de-)condensation (+TSA, -ATP)
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Conclusion

The compacted chromatin quasi-fibre, folds into stable loop-aggregates connected by a linker !

Every structural level of nuclear organization including its dynamics is
connected and represented in all the other levels in a holistic systems genomics manner.
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Evolutionary Architecture Perspective

Only a compacted chromatin quasi-fibre, folded into stable loop-aggregates connected by a linker
allows to guaranty the functional informational requirements of genomes:

i) storage stability/flexibility, ii) readout, and iii) replication !

Storage stability/flexibility:

The packaging ratio/scale into a quasi-fibre and stable loops forming rosettes is optimal for the
physical stability of genomes, while it is flexible enough to allow functional differences as well as react
to entropic and other damages.

Readout:

The dynamics this architecture allows expression/regulation by self-organization into (in-)active units
already in proximity, and guaranties at the same time accessibility to and from the information for
factors as well transcripts.

Replication:

The 2D knot-free topology as well as the packaging ratio/scale into a quasi-fibre and stable loops
forming rosettes, allows concatenation free replication with low error/damage rate due to the easy
block-wise proximity organization as well as the easy physical (de-)condensation during cell division.

Form follows function and function follows form!
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The
Three-Dimensional Multi-Loop Aggregate/Rosette Chromatin Architecture
and

Functional Dynamic Organization of Genomes

Consequences and Perspectives

Knoch, T. A.

Interdisciplinary Seminar Super-Resolution Microscopy, Biological Networks, and Chromatin
Architecture, University of Riga, Riga, Latvia, 8th — 9th October, 2015.

Abstract

The dynamic three-dimensional chromatin architecture of genomes and the obvious co-evolutionary connection
to its function — the storage and expression of genetic information — is still debated after ~170 years. With a
systems genomics approach combining a novel selective high-throughput chromosomal interaction capture
(T2C) with quantitative polymer simulations and scaling analysis of architecture and DNA sequence, we
determined and cross-proved the final architecture of genomes with unprecedented molecular resolution and
dynamic range from single base pairs to entire chromosomes: for several genetic loci of different species, cell
type, cell cycle, and functional states a chromatin quasi-fibre exists with 5+1 nucleosome per 11 nm, which folds
into stable(!) 40-100 kbp loops forming stable(!) aggregates/rosettes which are connected by a ~50 kbp
chromatin linker. Polymer simulations using Monte Carlo and Brownian dynamics approaches confirm this and
predict and explain additional experimental findings. Beyond, a novel fluorescence correlation spectroscopy
(FCS) approach combined with analytical polymer models measures the architectural dynamics in vivo, and
agrees with the before mentioned conclusion using completely independent means. Beyond, we find a fine-
structured multi-scaling behaviour of both the architecture and the DNA sequence, showing for the first time
directly the tight entanglement between architecture and sequence. This agrees with the outcome of a synopsis
e.g. with previous spatial distance measurement studies, in vivo morphology of entire cell nuclei, or electron
microscopy of chromosome spreading studies, as well as the heuristics of the field in the last 170 years. This
architecture has fundamental consequences for the entire system of the storage and expression of genetic
information as well as for its investigation: E.g. this architecture, its dynamics, and accessibility balance stability
and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization
of (in)active units already in proximity. Thus, both the T2C and FCS approaches open the door to “architectural
and dynamic sequencing” of genomes at a resolution where a genome mechanics with corresponding uncertainty
principles applies. Consequently, this will lead now to a detailed understanding of genomes with fundamental
new insights and huge novel perspectives for diagnosis, treatment and genome engineering efforts in the future.
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